Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note Edge colorings of planar graphs without 5-cycles with two chords [☆]

Jian-Liang Wu^{a,*}, Ling Xue^b

^a School of Mathematics, Shandong University, Jinan, 250100, China

^b Department of Information Engineering, Taishan Polytechnic, Tai'an, 271000, China

ARTICLE INFO

Article history: Received 4 January 2013 Received in revised form 16 July 2013 Accepted 18 July 2013 Communicated by D.-Z. Du

Keywords: Edge coloring Planar graph Cycle Class 1

ABSTRACT

A graph G is of class 1 if its edges can be colored with k colors in such a way that adjacent edges receive different colors, where k is the maximum degree of G. It is proved here that every planar graph is of class 1 if its maximum degree is at least 6 and any 5-cycle contains at most one chord.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite and simple. Let *G* be a graph with the vertex set V(G) and edge set E(G). If $v \in V(G)$, then its neighbor set $N_G(v)$ (or simply N(v)) is the set of the vertices in *G* adjacent to *v* and the *degree* d(v) of *v* is $|N_G(v)|$. We denote the maximum degree of *G* by $\Delta(G)$. For $V' \subseteq V(G)$, denote $N(V') = \bigcup_{u \in V'} N(u)$. A *k*-, k^+ -vertex is a vertex of degree *k*, at least *k*. A *k* (or k^+)-vertex adjacent to a vertex *x* is called a *k* (or k^+)-neighbor of *x*. Let $d_k(x)$, $d_{k^+}(x)$ denote the number of *k*-neighbors, k^+ -neighbors of *x*. A *k*-cycle is a cycle of length *k*. Two cycles sharing a common edge are said to be adjacent. Given a cycle *C* of length *k* in *G*, an edge $xy \in E(G) \setminus E(C)$ is called a *chord* of *C* if *x*, $y \in V(C)$. Such a cycle *C* is also called a chordal-*k*-cycle.

A graph is *k*-edge-colorable, if its edges can be colored with *k* colors in such a way that adjacent edges receive different colors. The edge chromatic number of a graph *G*, denoted by $\chi'(G)$, is the smallest integer *k* such that *G* is *k*-edge-colorable. In 1964, Vizing showed that if *G* is a graph with maximum degree Δ , then $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$. A graph *G* is said to be of class 1 if $\chi'(G) = \Delta$, and of class 2 if $\chi'(G) = \Delta + 1$. A graph *G* is critical if it is connected and of class 2, and $\chi'(G - e) < \chi'(G)$ for any edge *e* of *G*. A critical graph with maximum degree Δ is called a Δ -critical graph. It is clear that every critical graph is 2-connected.

For planar graphs, more is known. As noted by Vizing [2], if C_4 , K_4 , the octahedron, and the icosahedron have one edge subdivided each, class 2 planar graphs are produced for $\Delta \in \{2, 3, 4, 5\}$. He proved that every planar graph with $\Delta \ge 8$ is of class 1 (there are more general results, see [3] and [5]) and then conjectured that every planar graph with maximum degree 6 or 7 is of class 1. The case $\Delta = 7$ for the conjecture has been verified by Zhang [9] and, independently, by Sanders and Zhao [6]. The case $\Delta = 6$ remains open, but some partial results are obtained. Theorem 16.3 [2] stated that a planar

CrossMark

 $^{^{\}star}\,$ This work was partially supported by National Natural Science Foundation of China (No. 11271006).

^{*} Corresponding author.

E-mail address: jlwu@sdu.edu.cn (J.-L. Wu).

^{0304-3975/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tcs.2013.07.027

graph with the maximum degree Δ and the girth g is of class 1 if $\Delta \ge 3$ and $g \ge 8$, or $\Delta \ge 4$ and $g \ge 5$, or $\Delta \ge 5$ and $g \ge 4$. Lam, Liu, Shiu and Wu [4] proved that a planar graph G is of class 1 if $\Delta \ge 6$ and any vertex is incident with at most one 3-cycle. Zhou [10] obtained that every planar graph with $\Delta \ge 6$ and without 4- or 5-cycles is of class 1. Bu and Wang [1] proved that every planar graph with $\Delta \ge 6$ and without chordal 5-cycles and chordal 6-cycles is of class 1. Wang and Chen [7] proved that every planar graph is of class 1 if $\Delta \ge 6$ and it does not contain a 5-cycle with a chord. In the paper, we shall improve the above result by proving that every planar graph with $\Delta = 6$ and without 5-cycles with two chords is of class 1. Recently, Wang and Xu [8] proved that every plane graph G with maximum degree 6 is edge 6-colorable if no vertex in G is incident with four faces of size 3.

2. The main result and its proof

To prove our result, we will introduce some known lemmas.

Lemma 1. (See [6,9].) If *G* is a planar graph with $\Delta(G) \ge 7$, then *G* is of class 1.

Lemma 2. (Vizing's Adjacency Lemma [2]). Let G be a Δ -critical graph, and let u and v be adjacent vertices of G with d(v) = k.

(a) If $k < \Delta$, then u is adjacent to at least $\Delta - k + 1$ vertices of degree Δ ;

(b) If $k = \Delta$, then u is adjacent to at least two vertices of degree Δ .

From Vizing's Adjacency Lemma, it is easy to get the following corollary.

Corollary 3. Let G be a \triangle -critical graph. Then

(a) every vertex is adjacent to at most one 2-vertex and at least two Δ -vertices;

(b) the sum of the degree of any two adjacent vertices is at least $\Delta + 2$;

(c) if $uv \in E(G)$ and $d(u) + d(v) = \Delta + 2$, then every vertex of $N(\{u, v\}) \setminus \{u, v\}$ is a Δ -vertex.

Lemma 4. (See [9].) Let G be a Δ -critical graph, $uv \in E(G)$ and $d(u) + d(v) = \Delta + 2$. Then

(a) every vertex of $N(N(\{u, v\})) \setminus \{u, v\}$ is of degree at least $\Delta - 1$;

(b) if $d(u), d(v) < \Delta$, then every vertex of $N(N(\{u, v\})) \setminus \{u, v\}$ is a Δ -vertex.

Lemma 5. (See [6].) No Δ -critical graph has distinct vertices x, y, z such that x is adjacent to y and z, $d(z) < 2\Delta - d(x) - d(y) + 2$, and xz is in at least $d(x) + d(y) - \Delta - 2$ triangles not containing y.

To be convenient, we give some definitions and notations on planar graphs. Let *G* be a plane graph and *F*(*G*) the face set of *G*. A face of *G* is said to be *incident* with all edges and vertices in its boundary. Two faces sharing an edge *e* are said to be *adjacent* at *e*. The degree of a face *f* of *G*, denoted by $d_G(f)$, is the number of edges incident with *f* where each cut edge is counted twice. A *k*-, *k*⁺-face is a face of degree *k*, at least *k*. A *k*-face of *G* is called an $(i_1, i_2, ..., i_k)$ -face if the vertices in its boundary are of degrees $i_1, i_2, ..., i_k$ respectively. A 3-face is denoted by [x, y, z] if it is incident with distinct vertices *x*, *y*, *z* and $d(x) \leq d(y) \leq d(z)$. For a vertex $v \in V(G)$, we denote by $f_k(v)$ the number of *k*-faces incident with *v*.

Theorem 6. Let G be a planar graph with $\Delta \ge 6$. If any 5-cycle contains at most one chord, then G is of class 1.

Proof. Suppose that *G* is a counterexample to our theorem with the minimum number of edges and suppose that *G* is embedded in the plane. Then *G* is a 6-critical graph by Lemma 1, and it is 2-connected and Lemma 2. By Euler's formula |V(G)| - |E(G)| + |F(G)| = 2, we have

$$\sum_{x \in V(G)} (d(x) - 4) + \sum_{x \in F(G)} (d(x) - 4) = -8 < 0.$$

We define *ch* to be the initial charge. Let ch(x) = d(x) - 4 for each $x \in V \cup F$. So $\sum_{x \in V \cup F} ch(x) < 0$. In the following, we will reassign a new charge denoted by ch'(x) to each $x \in V \cup F$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum. If we can show that $ch'(x) \ge 0$ for each $x \in V \cup F$, then we get an obvious contradiction $0 \le \sum_{x \in V \cup F} ch'(x) = \sum_{x \in V \cup F} ch(x) < 0$, which completes our proof.

A 4-face f = [w, v, x, y] is called *special* if d(x) = 2 and v, x, y form a 3-face. The discharging rules are defined as follows.

R1 Let v be a 2-vertex. If v is incident with at least one 5⁺-face, then v receives 1 from any of its incident 5⁺-face, $\frac{1}{2}$ from each adjacent vertex; Otherwise, if v is incident with a special 4-face f, then v receives $\frac{1}{3}$ from f, $\frac{5}{6}$ from each adjacent vertex; Otherwise v receives 1 from each adjacent vertex.

Download English Version:

https://daneshyari.com/en/article/436672

Download Persian Version:

https://daneshyari.com/article/436672

Daneshyari.com