
Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijfoodmicro

Genetic structure and natural variation associated with host of origin in *Penicillium expansum* strains causing blue mould

S.M. Sanzani^{a,*}, C. Montemurro^a, V. Di Rienzo^a, M. Solfrizzo^b, A. Ippolito^a

^a Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy
^b Institute of Sciences of Food Production, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy

ARTICLE INFO

Article history: Received 20 December 2012 Received in revised form 10 April 2013 Accepted 18 April 2013 Available online 1 May 2013

Keywords: Penicillium expansum Patulin High Resolution Melting Host specificity Pathogenicity Virulence

ABSTRACT

Blue mould, caused by Penicillium expansum, is one of the most economically damaging postharvest diseases of pome fruits, although it may affect a wider host range, including sweet cherries and table grapes. Several reports on the role of mycotoxins in plant pathogenesis have been published, but few focussed on the influence of mycotoxins on the variation in host preference amongst producing fungi. In the present study the influence of the host on P. expansum pathogenicity/virulence was investigated, focussing mainly on the relationship with patulin production. Three P. expansum strain groups, originating from apples, sweet cherries, and table grapes (7 strains per host) were grown on their hosts of isolation and on artificial media derived from them. Strains within each P. expansum group proved to be more aggressive and produced more patulin than the other two groups under evaluation when grown on the host from which they originated. Table grape strains were the most aggressive (81% disease incidence) and strongest patulin producers (up to 554 µg/g). The difference in aggressiveness amongst strains was appreciable only in the presence of a living host, suggesting that the complex pathogen-host interaction significantly influenced the ability of P. expansum to cause the disease. Incidence/severity of the disease and patulin production proved to be positively correlated, supporting the role of patulin as virulence/pathogenicity factor. The existence of genetic variation amongst isolates was confirmed by the High Resolution Melting method that was set up herein, which permitted discrimination of P. expansum from other species (P. chrysogenum and P. crustosum) and, within the same species, amongst the host of origin. Host effect on toxin production appeared to be exerted at a transcriptional level.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Blue mould is considered one of the most important postharvest diseases of pome fruit worldwide (Pianzzola et al., 2004), although it can cause serious decay amongst a wider range of harvested commodities such as stone fruit, soft fruit and berry fruit (Neri et al., 2010). The disease may be caused by various Penicillium species, of which Penicillium expansum is the most aggressive and commonly encountered. Amongst other species, P. solitum, P. crustosum, and P. chrysogenum have been reported (Pitt et al., 1991; Sanderson and Spotts, 1995). Blue mould, being a soft rot, severely affects the quality properties of the infected fruit making it unmarketable, with consequent economic losses for retailers. Furthermore, species in genus Penicillium are well known producers of pharmaceutically active compounds but also dangerous mycotoxins (Frisvad and Samson, 2004). For example, P. expansum has been shown to produce several toxic compounds including patulin, which has mutagenic, immunotoxic, and neurotoxic properties (Castoria et al., 2012), so that its content in apple-derived products has been regulated by the European Commission (2006). Since patulin is extremely stable at acidic pH and resistant to pasteurization, it is critical for the fruit processing industry to detect and minimize P. expansum rots in fruits destined to juice production. However, the effectiveness of the control is often reduced by several pathogen characteristics such as: i) the development of resistance to the few fungicides permitted in the postharvest phase; ii) the penetration through wounds (produced during picking and handling operations), natural openings (stem end, open calyx tube, lenticels, etc.) or infection sites of other primary pathogens; iii) the ability to grow both at refrigeration temperatures used for storage $(-1, 0 \degree C)$ and in warmer environments at retail and consumer sites, particularly on over-mature/long-stored fruits (Mari et al., 2009). Most studies on patulin are focussed on apples and derived products, since apple fruits are reported as the most susceptible and the only ones for which regulatory limits have been imposed (Sant'Ana et al., 2008). However, patulin production at considerable levels has been reported even on other fruit hosts (Larsen et al., 1998; Neri et al., 2010; Piemontese et al., 2005; Reddy et al., 2010). Therefore, it is conceivable that in the future, patulin contamination of fresh fruits other than apples and their derived products might become a bigger issue for the food industry.

The role of mycotoxins in plant pathogenesis is still not completely understood. In general, secondary metabolites produced by fungi are

^{*} Corresponding author. Tel.: + 39 0805443055; fax: + 39 0805442911. *E-mail address:* simonamarianna.sanzani@uniba.it (S.M. Sanzani).

^{0168-1605/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.04.024

Table 1

Penicillium spp. strains, host of isolation, species, patulin production (on PDA) and SNP-cluster. In bold the selected *P. expansum* strains and the accession numbers of partial β -tubulin sequences deposited in GenBank are reported.

solate name	Host	Identification	Patulin production ($\mu g/cm^2$)	SNP-cluster	Accession
ex1	Apple	Penicillium crustosum	0	6	
ex2	Cherry	Penicillium expansum	4.23	1	
ex3	Cherry	Penicillium expansum	4.62	1	
ex4	Apple	Penicillium expansum	11.37	2	KC342827
ex5	Apple	Penicillium expansum	2.45	2	KC342828
ex6	Apple	Penicillium expansum	13.11	2	KC342829
ex7	Apple	Penicillium expansum	6.26	2	KC342830
ex8	Apple	Penicillium expansum	8.30	1	
ex9	Cherry	Penicillium expansum	12.47	1	
ex10	Pear	Penicillium crustosum	0	4	
ex11	Cherry	Penicillium chrysogenum	0	3	
ex12	Almond	Penicillium crustosum	0	5	
ex13	Cherry	Penicillium expansum	5.09	1	
x14	Cherry	Penicillium expansum	7.19	1	
ex15	Cherry	Penicillium expansum	6.44	1	KC34283
x16	Cherry	Penicillium expansum	6.40	1	
ex17	Cherry	Penicillium expansum	4.53	1	
ex18	Cherry	Penicillium expansum	7.53	1	KC342832
x19	Cherry	Penicillium expansum	12.96	1	KC34283
x20	Cherry	Penicillium expansum	0.60	1	1105 1205
ex21	Almond	Penicillium chrysogenum	0	3	
ex22		Penicillium expansum	5.76	1	
	Cherry				
x23	Cherry	Penicillium expansum	6.98	1	
x24	Cherry	Penicillium expansum	5.18	1	
x25	Cherry	Penicillium expansum	6.41	1	
x26	Cherry	Penicillium expansum	6.63	1	
x27	Cherry	Penicillium chrysogenum	0	3	
x28	Apricot	Penicillium chrysogenum	0	3	
x29	Apricot	Penicillium chrysogenum	0	3	
x30	Almond	Penicillium crustosum	0	1	
x31	Cherry	Penicillium expansum	10.18	1	KC34283
x32	Cherry	Penicillium expansum	4.38	1	
x33	Cherry	Penicillium expansum	8.34	1	KC34283
x34	Cherry	Penicillium expansum	6.06	1	
x35	Cherry	Penicillium expansum	6.07	1	
ex36	Cherry	Penicillium expansum	7.60	1	KC34283
ex37	Cherry	Penicillium expansum	6.06	1	
ex38	Cherry	Penicillium expansum	5.61	1	
x39	Cherry	Penicillium expansum	6.34	1	
ex40	Cherry	Penicillium expansum	7.39	1	
x40	Cherry	Penicillium expansum	11.30	1	KC34283
ex42	Cherry	Penicillium expansum	7.82	1	KC34203
ex43	•		8.17	1	
	Cherry	Penicillium expansum			
x44	Cherry	Penicillium crustosum	0	4	
x45	Apple	Penicillium expansum	6.30	1	
x46	Cherry	Penicillium expansum	3.32	1	
ex47	Apple	Penicillium expansum	7.71	1	KC34283
x48	Grape	Penicillium expansum	10.25	1	
x49	Grape	Penicillium expansum	9.11	1	
x50	Grape	Penicillium expansum	9.79	1	
x51	Grape	Penicillium expansum	0.00	1	
x52	Grape	Penicillium expansum	7.26	1	
x53	Grape	Penicillium expansum	6.87	1	
x54	Grape	Penicillium expansum	21.22	1	
x55	Grape	Penicillium expansum	13.47	1	
x56	Grape	Penicillium expansum	8.66	1	
x57	Grape	Penicillium expansum	6.34	1	
x58	Grape	Penicillium expansum	6.82	1	
x59	Raspberry	Penicillium crustosum	0	5	
x60	Grape	Penicillium expansum	21.56	1	KC34283
	-	Penicillium expansum			
x61	Grape		28.48	1 1	KC34284
x62	Grape	Penicillium expansum	26,17		1/02 420 4
x63	Grape	Penicillium expansum	27,67	1	KC34284
x64	Grape	Penicillium expansum	12.20	1	
x65	Grape	Penicillium expansum	15.58	1	
x66	Grape	Penicillium expansum	19.96	1	
ex67	Grape	Penicillium expansum	24.94	1	KC34284
x68	Grape	Penicillium expansum	10.10	1	
x69	Grape	Penicillium expansum	12.93	1	
x70	Grape	Penicillium expansum	15.91	1	
x71	Grape	Penicillium expansum	16.84	1	
ex72	Grape	Penicillium expansum	18.45	1	KC34284
_	-	-			
ex73	Grape	Penicillium expansum	0.76	1	

Download English Version:

https://daneshyari.com/en/article/4367096

Download Persian Version:

https://daneshyari.com/article/4367096

Daneshyari.com