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a b s t r a c t

In this paper, we present a rigorous analysis on the limiting behavior of the degree distribu-
tion of the partial duplication model, a random network growth model in the duplication
and divergence family that is popular in the study of biological networks. We show that
for each non-negative integer k, the expected proportion of nodes of degree k approaches
a limit as the network becomes large. This fills in a gap in previous studies. In addition, we
prove that p = 1/2, where p is the selection probability of the model, is the phase tran-
sition for the expected proportion of isolated nodes converging to 1, and hence answer a
question raised in Bebek et al. [G. Bebek, P. Berenbrink, C. Cooper, T. Friedetzky, J. Nadeau,
S.C. Sahinalp, The degree distribution of the generalized duplication model, Theoret. Com-
put. Sci. 369 (2006) 239–249]. We also obtain asymptotic bounds on the convergence rates
of degree distribution. Since the observed networks typically do not contain isolated nodes,
we study the subgraph consisting of all non-isolated nodes contained in the networks gen-
erated by the partial duplication model, and show that p = 1/2 is again a phase transition
for the limiting behavior of its degree distribution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, networks have been used to elucidate many complex systems in different disciplines, including
computer science, biology, technology and social science. In biology, a network provides a useful tool to represent and study
interaction data of different types in cellular systems, such as protein–protein interaction,metabolic and gene regulation [1].
By investigating the interactions at a network level, new insights into the molecular mechanisms behind these systems can
be discovered [2]. For example, a protein–protein interaction (PPI) network of the plant Arabidopsis thaliana containing
about 6200 physical interactions between about 2700 proteins was constructed recently by [3], and a study based on it
by [4] indicated how pathogens may exploit protein interactions to manipulate a plant’s cellular machinery.

Since cellular networks in biology are often huge and complex, they are typically modeled in the framework of random
networks, which enables simulation, inference and prediction to be made. The most studied random network model in
mathematics is the Erdös–Rényi (ER) model proposed by [5], in which each pair of nodes is connected independently with
a probability specified by the model. However, the degree distributions obtained from this model approximately follow
Poisson distributions, which do not exhibit the heavy-tailed phenomenon commonly observed in the empirical degree
distributions of many real networks, such as theWorldWideWeb, PPI network of budding yeast, and metabolic network of
Escherichia coli. To capture such heavy-tailed phenomena, the preferential attachment (PA) model was popularized by [6],
where a new node is added at each step and connected to a fixed number of nodes that are chosen with probabilities
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proportional to their degrees. A characteristic feature of the PAmodel is that it produces networks with degree distributions
following power laws. This fits well with many observed networks, although the universality of power laws is being
questioned [7].

Inmodeling biological networks, one should not simply focus onwhether the summary statistics produced by the random
networks fit well with those of the biological networks, but whether the modeling is biologically supported. In proteome,
gene duplication followed by mutation is believed to be the main driving force behind protein evolution [8,9]. The effect
of this mechanism on PPI network evolution was described by [10]: immediately after a gene is duplicated, the new node
representing this gene copies all the interactions of the duplicated gene, and then the edges adjacent to the duplicated node
or new node are randomly lost. This mechanism was formulated into a network growth model by [11]. Since then, many
variations and extensions have been proposed and studied [12–18]. We refer to this family of network growth models as
duplication and divergence (DD) models.

Arguably, one of the most fundamental models in the DD family is the partial duplication (PD) model studied by [15].
In this model, at each step an anchor node is chosen uniformly from the current network and a new node is added and
independently this new node is connected to each neighbor of the anchor node with selection probability p (see Section 2
for more details). This model is particularly attractive for two reasons: it captures the basic principles behind PPI evolution,
and its simplicity enables us to conduct rigorous mathematical analysis. By studying this model we can gain insights into
other more sophisticated DD models.

Herewe focus on the degree distribution of the PDmodel. By degree distributionwemean the sequence {ft(k)}k≥0, where
ft(k) denotes the expected proportion of nodes of degree k at time t . Note that the PD model is studied at the ensemble level
in this paper, that is, we are mainly interested in the average behavior over many different realizations. One general tool
to study the degree distribution of random networks is the master equation of ft(k) (see [19] and the references therein).
However, despite the simplicity of the PDmodel, its master equation is still too complicated to be solved analytically and no
analytic solution is known yet, except for the full duplicationmodel, the special casewhen p = 1 [20]. Instead, the attention
has been centered on the limiting degree distribution, which provides valuable information on the long run behavior of the
model [15,16,21].

Prior to studying limiting degree distribution, we need to establish its existence, that is, whether the limit of ft(k) for a
given k exists as t approaches infinity. For the special case k = 0, the existence of f (0) = limt→∞ ft(0)was proved by [16] by
showing {ft(0)}t≥0 is indeed a non-decreasing sequence. However, the other cases remained open and it was often assumed
that they do exist in previous studies. For example, Lemma 2 in [16] states that for k ≥ 1, if ft(k) tends to a limit, then this
limit must be 0. In this paper, we close this gap by showing that the limit of ft(k) does exist for each k ≥ 0, and hence the
sequence (ft(0), ft(1), ft(2), . . .) converges pointwise to (f (0), 0, 0, . . .) as t approaches infinity.

An important property of the PD model is that it may produce graphs containing a large proportion of isolated nodes,
that is, f (0) is typically large when p is small. Therefore, it is of interest to know the behavior of f (0) relative to selection
probability p. Indeed, one central problem for the PD model, as stated in [16, Section 3.1], is to characterize the values of p
for which ft(0) tends to 1. Here we answer this question by showing that p = 1/2 is the phase transition for the expected
proportion of isolated nodes converging to 1. More precisely, we prove that f (0) < 1 for 1/2 ≤ p ≤ 1, and f (0) = 1 for
0 < p < 1/2. In addition, we also obtain upper and lower asymptotic bounds on the convergence rate of {ft(0)}t≥0, as well
as a uniform upper bound on the convergence rate of {ft(k)}t≥0 for all k ≥ 1.

Since isolated nodes are generally irrelevant to the observed PPI networks, here we also study the subgraph consisting
of all non-isolated nodes in the PD model. Interestingly, p = 1/2 turns out again to be a phase transition for the limiting
degree distribution. When 1/2 ≤ p ≤ 1, the limiting degree distribution does exist and it is (0, 0, . . .), that is, the expected
fraction of degree k in this subgraph tends to 0 for all k ≥ 1. Therefore, the limiting degree distribution does not follow a
power law in this region. However, the case when 0 < p < 1/2 is more delicate. With the assumption that the limiting
degree distribution exists, we prove that the entries in this limiting distribution must be strictly positive, and they satisfy
a system of equations. In addition, the limiting degree distribution in this region also follows a power law. Our results are
then applied to three real PPI networks to obtain the power law exponent and selection probability for each network.

The structure of the rest of this paper is as follows. In the next section, we describe the PDmodel and themaster equation
for the expected degree sequence. In Section 3, we present some preliminary results. In Section 4, we establish the existence
of limiting degree distribution and show that p = 1/2 is the phase transition for the expected fraction of isolated nodes
converging to 1. Section 5 is devoted to the bounds on rates of convergence. In Section 6 we study the limiting degree
distribution of the subgraph with all isolated nodes removed, and apply the results to three real PPI networks. Finally, we
end with Section 7 for some concluding comments and possible directions for further study.

2. The model

All networks studied in this paper are undirected; they are also referred to as graphs. In the partial duplication model
M(Gt0 , p), where Gt0 is the seed graph and 0 < p ≤ 1 is the selection probability of the model, we start with Gt0 and at each
time step t , the graph Gt is obtained from Gt−1 by the following procedures: A node ut is chosen uniformly from the set of
nodes in Gt−1, and a new node vt is added and independently connected to each neighbor of ut with probability p (see Fig. 1
for an illustration). Here ut and vt are often referred to as the anchor node and new node at step t , respectively. Throughout
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