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1. Introduction

Spatially periodic patterning of sessile biota can be observed in a
variety of ecosystems including arid ecosystems (Macfadyen, 1950),
mussel beds (van de Koppel et al., 2005), boreal peatlands
(Malmström, 1923) and tropical peatlands (Baldwin and Hawker,
1915). Such spatially periodic patterns can typically not be explained
by underlying heterogeneity in the environment, which suggests
that they are self-organized. Self-organization into periodic patterns
is the result of positive feedbacks that act locally (short range
activation) in combination with distal negative feedbacks (long
range inhibition; Gierer and Meinhardt, 1972). This combination of
feedbacks is also referred to as scale-dependent feedbacks (Rietkerk

and van de Koppel, 2008). In arid ecosystems, the combination of
locally reduced evaporation through shading and water uptake by
laterally extended roots is known to induce such scale-dependent
feedbacks (Gilad et al., 2004; Meron, 2012). Scale-dependent
feedbacks can also result from the fact that in arid ecosystems plants
tend to improve soil structure which allows more water to infiltrate
during rain events (Rietkerk et al., 2000; Thompson et al., 2010). This
results in increased water availability and increased plant growth,
meaning that locally a positive feedback loop is active. However,
water availability farther away is negatively affected by this
facilitative effect: surface water accumulates on bare soils during
intense rain events and moves towards vegetated areas due to a
gentle slope or due to infiltration differences on flat terrain
(Klausmeier, 1999; Rietkerk et al., 2002). In arid ecosystems, local
positive feedbacks are therefore linked to a flux of resource that
results in long range inhibition and consequently in pattern
formation. This type of scale-dependent feedback is referred to as
the resource-concentration mechanism (Rietkerk et al., 2004). The
positive feedbacks that are often involved in pattern formation
(Rietkerk and van de Koppel, 2008) are associated with nonlinear
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A B S T R A C T

Spatially periodic patterns can be observed in a variety of ecosystems. Model studies revealed that

patterned ecosystems may respond in a nonlinear way to environmental change, meaning that gradual

changes result in rapid degradation. We analyze this response through stability analysis of patterned

states of an arid ecosystem model. This analysis goes one step further than the frequently applied Turing

analysis, which only considers stability of uniform states. We found that patterned arid ecosystems

systematically respond in two ways to changes in rainfall: (1) by changing vegetation patch biomass or

(2) by adapting pattern wavelength. Minor adaptations of pattern wavelength are constrained to

conditions of slow change within a high rainfall regime, and high levels of stochastic variation in biomass

(noise). Major changes in pattern wavelength occur under conditions of either low rainfall, rapid change

or low levels of noise. Such conditions facilitate strong interactions between vegetation patches, which

can trigger a sudden loss of half the patches or a transition to a degraded bare state. These results

highlight that ecosystem responses may critically depend on rates, rather than magnitudes, of

environmental change. Our study shows how models can increase our understanding of these dynamics,

provided that analyses go beyond the conventional Turing analysis.
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ecosystem response to environmental change (DeAngelis et al.,
1980; Rietkerk et al., 2004). This means that gradual changes in
environmental conditions may result in sudden significant losses in
productivity and in degradation of patterned ecosystems.

Reaction–(advection–)diffusion models have been developed to
understand the mechanisms responsible for pattern formation, to
study the conditions under which scale-dependent feedbacks are
strong enough for patterning to occur and to get more insight in the
possible nonlinear behavior of patterned ecosystems (e.g. Klaus-
meier, 1999; Von Hardenberg et al., 2001; Rietkerk et al., 2002;
Gilad et al., 2004). In these models, patterns typically arise from a
uniform system state that becomes unstable to heterogeneous
perturbations. This type of instability is referred to as Turing
instability (after A.M. Turing, 1912–1954; Turing, 1953) and is
thought to be involved in for example the formation of patterns on
animal coats (Meinhardt, 1982), on sea shells (Meinhardt, 1995)
and in chemical systems (Gray and Scott, 1984; Pearson, 1993).
Using linear stability analysis, it is possible to find the parameter
ranges for which a uniform system state is Turing unstable.

At present, Turing analysis is used as a relatively simple way to
study the environmental conditions under which one would
expect periodic patterns to be observed (e.g. Klausmeier, 1999;
HilleRisLambers et al., 2001; Meron et al., 2004; Gilad et al., 2004;
Kefi et al., 2008; Eppinga et al., 2009). However, since Turing
analysis only considers the stability of uniform system states, it
provides very little information about the behavior of ecosystems
that are in a patterned state. Therefore, previous studies have been
exploring this behavior using numerical approaches. These studies
revealed a number of interesting properties of patterned ecosys-
tems. Various model studies suggest that patterns can be expected
under conditions where uniform system states are still stable and
under conditions too harsh for uniform cover to be sustained (e.g.
Von Hardenberg et al., 2001; Rietkerk et al., 2002). These findings
imply that stable uniform and stable patterned states can coexist
for a range of environmental conditions (Rietkerk et al., 2004). The
coexistence of alternative stable ecosystem states can result in so-
called critical transitions (Scheffer, 2009) if environmental
conditions change, which are associated with sudden losses of
productivity and ecosystem degradation (Scheffer et al., 2001).
Numerical studies that looked in more detail to the dynamics of
patterned ecosystem states suggest that multiple stable patterned
states, with different wavelength or spatial configurations, can
coexist and that this can result in hysteresis and more gradual
ecosystem adaptation if environmental conditions change (Sher-
ratt and Lord, 2007; Bel et al., 2012).

Although studies with numerical approaches uncovered some
interesting characteristics of patterned ecosystems, recent studies
have been exploring whether the use of analytically based
methods provides more detailed insights (Van der Stelt et al.,
2013; Sherratt, 2013a). These approaches go one step further than
Turing analysis as they consider the stability of patterned rather
than uniform ecosystem states. By combining stability analysis on
patterned states with model runs, Sherratt (2013a) demonstrated
that hysteresis can be explained by the coexistence of multiple
stable states. His study also suggests that the rate at which
environmental conditions change may affect system response. This
is of particular importance as current human activities induce
anomalous rates of environmental change (e.g. Joos and Spahni,
2008). Although these results suggest that information about the
stability of patterned states is essential in understanding ecosys-
tem response to changing environmental conditions, the applica-
tion of stability analysis on patterned states in the field of ecology
has been limited so far and various ecologically relevant questions
remain to be answered (Van der Stelt, 2012, pp. 95–100).

One of the processes that are not well understood is the process
of pattern wavelength adaptation. Patterned ecosystems can

respond to environmental change by adapting pattern wavelength
and the study by Sherratt (2013a) showed that this process is
affected by the rate of environmental change. It is, however,
unknown why and how patterned ecosystems adapt and why this
depends on the rate of change. In this study we therefore aim to
provide a mechanistic understanding of how patterned ecosystems
respond to environmental change, considering both the magnitude
of change as well as the rate of change. By applying stability
analysis on patterned system states, we first show that the use of
Turing analysis can yield false negatives and false positives with
regard to predicting the existence of observable (i.e. stable)
patterns. Based on the mechanisms that are involved in pattern
destabilization, we then discuss possible types of pattern adapta-
tion. Using model runs, we demonstrate that knowledge about the
stability of patterned states is crucial in understanding the
response of ecosystems subject to environmental change and
show how the rate of change in environmental conditions and the
level of imposed spatio-temporal noise affect system response.
Finally, we propose that competition for resources between
patches of vegetation provides a possible ecological explanation
for the obtained results. In this study we use an extended version of
an arid ecosystem model by Klausmeier (1999) as introduced by
Van der Stelt et al. (2013), which we will discuss in the next
section.

2. Model description and analyses

2.1. Model description

The extended version of the Klausmeier model is a reaction–
advection–diffusion model in which the formation of spatial
vegetation patterns is the result of competition for surface water.
The model has two state variables that are functions of both time t

and space x (x2R): plant biomass n and surface water w. Notice
that we will consider only one spatial dimension (x), following Van
der Stelt et al. (2013) and Sherratt (2013a). The model is given by
Eqs. (1) and (2). We use a non-dimensional version the model in
order to reduce the number of parameters. For a dimensional
version of the model and the physical meaning of the parameters,
see Appendix A.
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The change in surface water w (Eq. (1)) is controlled by rainfall
a, surface water losses (second term) and uptake by plants through
infiltration and transpiration (third term). As in the original model
by Klausmeier (1999), the movement of surface water due to
gradients in the terrain is captured with an advection term (fourth
term). We extended the model by adding diffusion of surface water
(fifth term). We did this for three reasons. First, the diffusion term
has a physical basis as it can be derived from the shallow water
equations (Gilad et al., 2004). Second, it allows us to capture the
movement of surface water induced by spatial differences in
infiltration rate (Rietkerk et al., 2002). Third, it enables us to
demonstrate that the type stability analysis we use to study the
system’s response to change can be applied to both reaction–
advection–diffusion and reaction–diffusion model (v 6¼0 and v ¼ 0
respectively).

The dynamics in plant biomass n (Eq. (2)) are determined by
plant growth which is linearly related to water uptake (first term)
and by plant mortality (second term). As in the original model,
plant dispersion is modeled with a diffusion term (third term).
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