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A B S T R A C T

The distribution of living organisms, habitats and ecosystems is primarily driven by abiotic
environmental factors that are spatially structured. Assessing the spatial structure of environmental
factors, e.g., through spatial autocorrelation analyses (SAC), can thus help us understand their scale of
influence on the distribution of organisms, habitats, and ecosystems. Yet SAC analyses of environmental
factors are still rarely performed in biogeographic studies. Here, we describe a novel framework that
combines SAC and statistical clustering to identify scales of spatial patterning of environmental factors,
which can then be interpreted as the scales at which those factors influence the geographic distribution
of biological and ecological features. We illustrate this new framework with datasets at different spatial
or thematic resolutions. This framework is conceptually and statistically robust, providing a valuable
approach to tackle a wide range of issues in ecological and environmental research and particularly when
building predictors for ecological models. The new framework can significantly promote fundamental
research on all spatially-structured ecological patterns. It can also foster research and application in such
fields as global change ecology, conservation planning, and landscape management.

ã 2014 Elsevier B.V. All rights reserved.

1. Spatial scale and ecological models

1.1. Why is scale important when predicting the potential distribution
of species, biodiversity, habitats and ecosystems?

The modern global biodiversity crisis has promoted the
development and application of ecological models (Pereira et al.,
2010; Guisan and Thuiller, 2005), ranging from conservation
planning (Hannah et al., 2007) to the adaptive management of

alien invasive species and their impacts (Giljohann et al., 2011;
Vicente et al., 2011). However, accurately predicting species
distributions and range dynamics is not an easy task since
environmental, historical and human factors, as well as stochastic
events jointly contribute to shape them (Soberon and Nakamura,
2009). These many factors influence the occurrence, abundance
and the patterns of ecological diversity with different intensities
and at distinct spatial and temporal scales (de Knegt et al., 2010;
Dorman, 2007; Levin, 1992; McGill, 2010). Climate can well explain
ecological patterns at the continental scale (Araujo and Pearson,
2005), whereas topography, human land use or biotic interactions
are more important at regional and local scales (Dirnböck et al.,
2003; Guisan and Thuiller, 2005).

Ongoing environmental changes are also acting at different
spatial scales, and many ecosystems are predicted to be impacted
by those changes (Pereira et al., 2010). Shifts in environmental
conditions occurring at multiple scales could affect biodiversity,
habitats and ecosystems independently (Hannah et al., 2007;
Pereira et al., 2010). However, in most cases, they may interact and
produce either enhanced responses due to synergistic effects, or
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minor responses due to compensation effects (Kalnay and Cai,
2003). For example, global climate warming may promote
regionally agricultural intensification in colder areas thus acting
synergistically with land-use change on species distributions,
whereas agricultural abandonment may compensate for increased
drought stress related to climate change by promoting forest
encroachment. Species range shifts under climatic change may be
hampered by local conditions such as soils (e.g., alkaline soils at
higher altitudes may prevent the upward movement of acid-
ophilous species; Theurillat et al., 1998) and land-use (see Bradley
and Mustard, 2006; Davis et al., 1998), not only for native
biodiversity but also for invasive species (Bradley et al., 2010;
Vicente et al., 2011). Thus, it becomes urgent to develop new
approaches that explicitly consider the effects of such environ-
mental factors on ecological processes at the appropriate scales.
Such approaches may be more informative and/or more accurate
when forecasting biodiversity dynamics (Bradley et al., 2010;
Vicente et al., 2011).

1.2. How can we explicitly include the effects of spatial scale in
ecological models?

Although different levels of causality and proximality can be
found in the relation between biodiversity patterns and environ-
mental factors (as inferred from ecological theory; Austin, 2002),
predictive variables are usually generated at a same grain size and
geographic extent, without specific consideration for their intrinsic
scale of influence on the biological features they are related to. This
“traditional” approach to ecological modeling has been applied so
far to a multitude of species and ecological contexts with variable
success. However, efficiently tackling the multiple drivers of
change and loss of biodiversity and the scales at which they act will
require novel or improved modeling frameworks (Pereira et al.,
2010). Such multi-scale approaches may capture dimensions that
have been ignored by approaches conducted at single scales
(Pearson et al., 2004). Classifications of environmental factors can
be applied with fixed extent and grain size, or with different
extents and grain sizes (“multi-scale approach” Milbau et al., 2009;
Pearson et al., 2004; Vicente et al., 2011). Two types of approaches
based on a priori classification according to spatial scale have been
used so far in ecological models: (i) fitting one model and
performing a posterior analysis of the relative importance of each
environmental factor (or group/type of factors) which vary at
different scales (e.g., by using variation partitioning Borcard et al.,
1992); or (ii) combining multiple models, each fitted with subsets
of environmental factors varying at a given spatial scale (e.g.,
Vicente et al., 2011). Both approaches require an a priori
classification or grouping of environmental factors according to
their scale of patterning. Spatial scale of variation (e.g., regional vs.
local) is generally supported by ecological theory, but theoretical
foundations should be supported by (geo-) statistics for additional
robustness and objectivity of predictor classifications (Vicente
et al., 2011).

2. Toward a conceptual framework for assessing scale of
patterning, and classification of environmental factors

2.1. Developing the framework

Improvements in the analysis of spatial distribution of
biological data could be achieved through the classification of
environmental factors according to their expected scale of
influence, which calls for a synthesis between ecological theory
and spatial statistics (Austin, 2002; Pearson et al., 2004). If the
environmental factors used to analyze and predict biological
features are structured in space in a way that can be captured by

SAC indicators, and if spatial models that relate biological features
(typically species occurrences) to these environmental factors can
be fitted fairly accurately, then SAC of environmental predictors
may be used by ecological modelers to infer their scale of influence
on the modeled biotic response variables.

Here we present such a novel framework (Fig. 1) to classify
environmental factors according to their scale of spatial structure
based on the estimation of their spatial autocorrelation (Moran’s I
and Geary C measures; Cliff and Ord, 1981; Legendre and Legendre,
1998 for more details see Supplementary data 1 and 2).

The classification of environmental factors is performed in
order to discriminate between classes of scale, for instance
between locally and regionally structured environmental factors.
For example in Vicente et al. (2011) environmental factors were
classified a priori as regional or local based on a theoretical
framework supported by ecological theory, namely concepts from
landscape ecology, (meta) community ecology, phytosociology,
and biogeography. The underlying rationale was that the
distribution of species is driven by processes linked to several
levels of ecological complexity, and therefore expressed at
different spatial scales. This type of classification is based on: (i)
their scale of spatial patterning, i.e., the scale at which SAC is
detected, and (ii) the ecological and environmental scale/context
in which they are theoretically hypothesized to influence spatial
patterns of biodiversity and other biological features (i.e., a
maximum covariance between an environmental factor and a
biological feature). This approach has been used by ecologists
seeking a better understanding of how patterns of environmental
heterogeneity influence ecological processes (Law et al., 2009) but,
to our knowledge, this has never been applied to classify
environmental factors in the context of distribution modeling.
We illustrate this novel framework by distinguishing “regional”
from “local” predictors and use them in a complementary way to
predict species distributions. The terms regional and local are used
here in a flexible sense and may not directly relate to formal spatial
scales since they are inherently dependent of the actual spatial
extent of analysis.

Fig. 1. Using a set of environmental factors, Moran’s I and Geary C indicators were
calculated for each environmental factor. (Step 1). Then, the calculated SAC values
were used to perform a fuzzy cluster analysis, obtaining a membership coefficient of
each environmental factor to each group/scale (Step 2). Finally, from the values of
Moran’s I and Geary C descriptive statistics were computed to describe the range of
possible values of the ensembleof regional and local environmental factors. “Mean”
refer to the range of means, and “St. Dev.” corresponds to the range of values for
standard deviation (Step 3).
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