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1. Introduction

The network approach to ecology focuses on patterns of
interactions among species, and how links are structured in the
network, more than on the species composing a community. The
research on Interaction Networks (INs) in community ecology is an
emerging field of theoretical ecology (Bascompte and Jordano,
2007; Vázquez et al., 2009) that is closely related to food webs and
antagonistic networks, but we shall focus on bipartite mutualistic
networks. The area is characterised by the famous MacArthur
quotation (MacArthur, 1972): ‘‘To do science is to search for
patterns, not just to accumulate facts’’. Perhaps, for IN studies, the
priority task is not to search for patterns, but to clarify their
meaning and mathematical basis. We consider in this paper two
patterns that are used to analyse INs: modularity and asymmetric
specialisation. The puzzling situation is that these patterns may be
either exclusive or complementary.

Modular patterns, or compartmentalisation in species interac-
tions, are widespread phenomena in INs, that are present in plant–
pollinator networks (Guimarães et al., 2007; Olesen, 2007), host–
parasite networks (Vacher et al., 2008), and food webs (Bascompte

and Stouffer, 2011). Compartmentalisation can appear due to spatial
or temporal co-occurrence of species in a community (Vázquez et al.,
2009). Some authors also claim that modular patterns may be
associated with groups of species that specialise on other groups due
to adaptation in a coevolutionary game, of which a prototypical
example is a predator–prey arms race (Thompson, 2005). To
quantify modularity the most used algorithm is by (Guimerá
et al., 2007), which gives the optimal number of modules and an
index of modularity with a confidence interval.

Asymmetric specialisation is a pattern that expresses the
following rule: species interact preferentially with species that
have the maximum difference in their number or weight of
interactions. Specialists prefer generalists, and neither generalists
nor specialists tend to interact with each other. Asymmetric
specialisation does not have an unique index; in this work we use
the Dependence Asymmetry DA because it is the simplest way to
quantify asymmetric specialisation in INs. The DA was explored
initially by (Jordano, 1987) and (Vázquez and Aizen, 2004) in
plant–pollinator networks. Most research in DA is connected to the
idea that asymmetric specialisation increases stability of INs
(Bascompte et al., 2006), an important issue in the complexity–
stability debate (MacCann, 2000; May, 1974).

Modularity and asymmetric specialisation are patterns that
suggest opposite tendencies. Modularity evokes the idea of closed
groups of species that interact among themselves and exclude
other species (Bascompte and Jordano, 2007). Asymmetric
specialisation, on the other hand, points in an opposite direction,
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A B S T R A C T

We discuss the relationship between two patterns found in interaction networks (INs) of community

ecology: modularity and asymmetric specialisation. These two patterns express two opposite features:

asymmetric specialisation suggests an interplay of generalists and specialists forming an entangled web

of interconnected species, while modularity brings the idea of groups of species interacting in isolated

cliques. We perform the analysis using Dependence Asymmetry (DA), which is the simplest way to

quantify asymmetric specialisation. We construct an algorithm that finds the pattern of maximal DA, and

we estimate the upper bound of DA analytically. We study the symmetric modular structure that has

zero DA, and then force an asymmetric mismatch in this pattern to generate high DA, allowing us to

compare it with a random pattern and with the maximal possible value. We conclude that, despite the

opposite notions suggested by the studied patterns, if a modular pattern has enough asymmetry it

resembles a specialised asymmetric pattern.
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where species with a large number of interactions associate with
species with few interactions. A game that gives origin to an
entangled ensemble that exclude groups and strongly integrates
species in the web of interactions (Vázquez and Aizen, 2004).

We explore differences and convergences between modularity
and DA, a topic that is specially relevant for the characterisation of
mutualistic INs (Bascompte and Jordano, 2007). We shall see that
the most symmetrical modular structures indeed have zero DA, but
a mismatch in the modular structure generates a substantial
alteration in the DA, easily surpassing the DA of a random network.
The paper starts by defining dependence asymmetry and the related
connectivity asymmetry. The algorithm of maximal DA is then
introduced and we exemplify patterns of maximal DA. An analytic
estimate of the average DA for a modular structure with an
asymmetry is found,andthisresult is comparedwitharandomanda
maximal average DA. Finally we discuss the results in connection
with the concept of nestedness, in particular the implications of this
result for the debate on modularity versus nestedness.

2. Dependence asymmetry

Consider a mutualistic plant–pollinator community consisting
of LP plants and LA animal (usually insect) pollinators. The central
concept of this work is the LP � LA adjacency matrix, the
mathematical object that represents the IN. The structure of the
IN is summarised in the matrix elements ai,j = 1 or 0 for the case of
a binary (or qualitative) networks, and ai; j ¼ wi; j or 0 for a
quantitative network. For the qualitative network, ai,j = 1 indicates
the presence of an interaction between plant species i and
pollinator species j, while ai,j = 0 indicates the absence of such an
interaction. For quantitative networks, wi; j is the weight of the
interaction between species i and j; this quantity is measured by
the frequency of visits of the pollinator species j to the plant species
i. In both cases, we can project the information of the matrix onto
connectivities of plants, kP, and animals, kA, given by

kP
i ¼

XLA

j¼1

ai; j and kA
j ¼

XLP

i¼1

ai; j (1)

For a binary network the quantity kP
i gives the number of

pollinator species that pollinate plant species i, and kA
j the number

of plant species pollinated by pollinator species j; in the case of
the quantitative network kP

i is the total number of observations of
pollinators pollinating plant species i, and kA

j the counterpart
for pollinator species j. For simplicity of the mathematical analysis,
we shall focus on binary networks from now on.

The dependence of a plant species i on any pollinator species is a
measure of how much the plant species depends on that particular
species for pollination. In a binary network the dependence dP

i of
plant species i on any one of its pollinating species is defined to be
the reciprocal of the total number of its pollinating species. The
dependence of dA

j of a pollinator species j on any one of the plant
species that it pollinates is defined in a similar way. Hence,

dP
i ¼

1

kP
i

and dA
j ¼

1

kA
j

: (2)

In this way, a specialist plant species i that interacts with just
one pollinator species has a maximal dependence on this species,
dP

i ¼ 1. In the opposite case we have a generalist, a plant species i

that depends on a large number N of pollinator species, and as a
consequence its dependence on any one of these species is
minimal, dP

i ¼ 1=N!0.
The dependence asymmetry di,j between plant species i and

pollinator species j is a quantity that expresses the difference

between the two dependences in the interaction. In this work
we employ a measure adapted from (Bascompte et al., 2006).
For noninteracting species we define di,j = 0, and for interacting
species we define di,j by

di; j ¼
jdP

i � dA
j j

ðdP
i þ dA

j Þ
: (3)

The modulus is taken since we are not interested in the sign of the
difference between species i and j, but only on its relative value.
We note that the index di,j is normalised, since 0 � di,j < 1.

The connectivity asymmetry index ci,j is also defined in the
literature, and is given by

ci; j ¼
jkP

i � kA
j j

ðkP
i þ kA

j Þ
: (4)

It is not difficult to prove that di,j = ci,j (Blüthgen et al., 2006).
Throughout this paper we use the term DA because it is more often
used in the literature. However, for mathematical simplicity, all
proofs in the manuscript will be based on Eq. (4).

The average DA of a network is therefore equal to its average
connectivity asymmetry c, given by averaging ci,j over all the
occupied sites of the matrix:

c ¼ 1

N

X
i; j

ci; j; (5)

where N is the number of non-zero sites in the matrix. In this way c

is non-trivially related to the occupation r = N/(LALP) of the matrix.
As we shall see, there is a considerable dependence of maximal c

and random c on r, and this fact expresses a true correlation among
these quantities and not an artifact of normalisation.

3. Algorithm of maximal DA for a square lattice

One of the objectives of this paper is to determine the
maximal DA, cmax, for a given occupation of a square lattice. We
accomplish this task using an appropriate algorithm, employing a
recursive equation that optimises ci,j. The algorithm for cmax is
summarised as follows.

1. Choose sites on a square lattice of size L � L uniformly at random
until it is filled with occupancy r.

2. Compute the function Hi,j for every site according to the rule:

if
ai; j ¼ 1; Hi; j ¼ ci; j

ai; j ¼ 0; Hi; j ¼ �ci; j

8<
:

3. Choose uniformly at random one occupied site among the 10%
smallest positive Hi,j and erase it. This choice guarantees that we
are erasing a site whose DA is low.

4. Choose uniformly at random one empty site among the smallest
negative Hi,j and occupy this site. In this way sites whose
occupancy maximally increases the DA are systematically
occupied.

5. The last two steps guarantee that the overall occupation of the
matrix remains constant. Repeat the three previous steps untilP

Hi; j >0Hi; j converges to an optimal value.

We use the algorithm of maximal DA to plot cmax against r, as in
Fig. 1. Here we took L = 20 and iterated the algorithm for 20, 000
steps. The first behaviour to notice in this plot is that cmax decreases
with occupancy; indeed, this is a probabilistic effect. High c is
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