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1. Introduction

Mathematical models are increasingly used to simulate and
predict the behavior of physical or biological systems, partly due
to the ability of models to incorporate high levels of complexity
that are characteristic of these systems (Song et al., 2012). In
ecological modelling, the complexity results mainly from the
different scales involved in the described physical or biological
processes and their interactions. Studying these different inter-
actions and determining how the interactions work together pose
a significant challenge. Ecologists refer to this phenomenon as
ecological complexity.

Ecological models are often characterized by many modules
describing the corresponding biophysical processes and by many
parameters serving as control factors. Mechanistic models (process
driven) are more powerful than empirical models (data driven) for

describing this type of system because they tell us about the
underlying processes that drive patterns. In mechanistic models,
the mathematical functions connecting inputs and outputs can be
attached to the physical meanings of processes.

The different steps in the development of mechanistic models
can be summarized as follows. (1) Conceptual work for the
definition of the model objectives and the scientific hypotheses for
the description of all processes involved: this step also involves
defining the model structure and the mathematical formalisms to
write the process equations. (2) Mathematical and numerical
analysis for conditional verification: the main aim of this step is to
study the general and limit model behavior, identifiability, and
model stability. (3) Experimentation, collection and analysis of
data. Specific protocols need to be designed about how unknown
parameters will be measured in experiments or be estimated from
the collected data. (4) Model identification: model structure
identification, comparing the model to experimental data, and
parametric identification. (5) Model validation: this step is
performed to qualitatively and quantitatively check whether the
resulting model achieves the modelling objectives.
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A B S T R A C T

A good sensitivity analysis (SA) practice must consider the diverse requirements and limitations of the

practice both for the purpose of the analysis in the model design process and from a methodology

perspective. Complex mechanistic models are often organized with several modules dynamically

describing the diverse multi-physical processes. They are also characterized by a significant number of

control factors. The strong interactions between the factors or the modules are crucial for understanding

the model complexity. A comprehensive methodology must be devised to meet not only the classical

objective of parameter screening for parameter estimation but also the objective of performing model

diagnosis by qualitatively and quantitatively checking the module importance and interactions. In this

paper, we proposed a comprehensive SA methodology adapted to complex mechanistic models

characterized by several interacting processes with modules describing each of them. In this

methodology, we successively perform the analysis of model nonlinearity, module importance ranking

and its evolution with time, module-by-module parameter screening, quantitative analysis of both intra-

and inter-module interactions, and the analysis of the complete model with a reduced number of

parameters due to parameter screening. The numerical implementation strategy and computational cost

analysis are also presented. A case study is presented on the Nitrogen Economy Model within plant

Architecture (NEMA), which is a typical model organized into modules describing the multi-biophysical

processes of plant growth. The results demonstrate that our methodology can help to reveal the

importance evolution and interactions between biophysical processes described by the model modules.

The reduction in the number of influential parameters to estimate from 83 to 17 by SA is also a significant

step forward for the NEMA model parameterization improvement process.
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Several complications arise in the design process of a
mechanistic model. First, it is generally impossible to identify a
single model structure for a physiological system because the
system is never closed and more than one model will be possible
(Aronica et al., 1998). Moreover, uncertainty can be related to the
interactions between the multiphysical processes described by the
model modules (De Rocquigny et al., 2008). If we consider plant
growth models, for example, these models are developed to
simulate biomass production and distribution among organs, in
interaction with the environment (De Reffye et al., 2008). The
complicated and interacting physiological processes governing
plant growth bring a large amount of uncertainty into their
modelling. Moreover, field surveys for collecting the necessary
data for the development and parameterization of models are
difficult and expensive. Even though high-throughput phenotyp-
ing techniques have strongly developed in the recent years, these
techniques remain expensive and are difficult to reproduce in
diverse environmental conditions (Tsaftaris and Noutsos, 2009;
Walter et al., 2012). Moreover, the data analysis to extract the
necessary data for model parameterization is far from straightfor-
ward.

As a consequence, input data (environmental factors) and
experimental data from which model parameters are estimated are
characterized by significant uncertainties.

How do the uncertainties of model structure, parameters, and
multiphysical process modules and the interactions between them
contribute to the total model uncertainty? It is important to
answer this question both qualitatively and quantitatively for the
application and development of complex mechanistic models
(Harper et al., 2011). In our case, the types of models that we focus
on have many parameters with interactions between them and
may have submodels (modules) describing the multiphysical
processes; hence, there are interactions between these modules.
Sensitivity analysis (SA) is the study of how the variation
(uncertainty) in the output of a mathematical model can be
apportioned, qualitatively or quantitatively, to different sources of
variation in the input factors of the model (Saltelli et al., 2008).
Global SA methods can help to identify influential model
parameters, processes, and the interactions between them, which
constitute the major portion of the uncertainties in model outputs.
It is expected that the analysis result can facilitate the design of
such complex models in two ways. First, quite classically, in the
parameterization process, it helps to simplify parameter estima-
tion by screening the noninfluential parameters for the model
outputs corresponding to the experimental data available for
parameter estimation. The complexity of parameter estimation
can be reduced by removing the noninfluential parameters.
Because the interactions between parameters can deeply affect
the strategy of parameter estimation, we are also obliged to
evaluate the interactions between parameters (Varella et al.,
2010). Variance decomposition-based SA methods, such as Sobol’s
method, can be used to study such interactions by the high-order
sensitivity indices (Wu et al., 2012). Second, SA helps by providing
new biological insights and diagnosis based on the importance of
processes and their interactions in the different stages of growth.
From a methodology perspective, there are different SA methods
that have different objectives and are adapted to different types of
models. First, the aims of SA must be considered, namely, factor
prioritization, factor fixing, variance cutting, or factor mapping
(Saltelli et al., 2008). Each aim involves different methods.
Moreover, the computing cost issue related to the complexity of
the models must also be seriously considered. For instance, the
standardized regression coefficients (SRCs) can be viewed as an
interesting tradeoff between the accuracy of the analysis and the
computing cost, but they are only validated when the model’s
linearity is high. Sobol’s method can help us to obtain the

interaction information for parameters and functional modules,
but in some cases, the sampling-based Monte Carlo simulation
makes Sobol’s method prohibitive from a computational perspec-
tive. In particular, when we perform the module analysis, the
interactions between modules involve diverse combinations of
interactions between factors within the modules, as revealed by a
number of higher-order Sobol’s indices. In this case, it is not
practical to compute all of the higher-order indices individually.
However, it is possible to obtain the portion of uncertainty
contributed by the intra- and inter-module interactions using the
decomposition of total-order indices (Chen et al., 2004) for group
factors associated with the modules of the model without
additional computing cost. A methodology must be devised to
make full use of such characteristics of Sobol’s method.

To summarize, both in the model design procedure (parame-
terization and model diagnosis) and from a methodology
perspective, a good SA practice must consider the diverse
requirements and limitations of the practice. It is increasingly
common for comprehensive SAs to involve several complemen-
tary methods. Flexibility in the use of different SA techniques is
crucial (Sun et al., 2012). Several works have been performed on
the complementary strategy of SA techniques (Sun et al., 2012;
Makler-Pick et al., 2011), and most of these studies are based on
machine learning algorithms. In the case of complex mechanistic
models, with many modules describing diverse multiphysical
processes, a significant number of control factors, and interac-
tions between factors or modules, it is necessary to emphasize
both the ‘factor screening’ for parameter estimation and the
model diagnosis by establishing the module importance and
interactions while avoiding prohibitive computing costs. For this
objective, variance-based methods, particularly Sobol’s method,
have the advantage of providing a detailed quantitative analysis
of the interactions compared with machine learning algorithms.
Thus, a comprehensive methodology must be devised to fulfill
the objectives by fully utilizing such complementary SA
methods.

In this paper, we propose a comprehensive SA methodology
adapted to complex mechanistic models characterized by several
interacting processes with modules describing each of them. This
procedure combines both SRC and Sobol’s method so that both the
advantages of the SRC method’s computing efficiency and Sobol’s
quantitative analysis can be used. We also discuss the numerical
implementation strategy and the computational cost issue of the
methodology. A case study is presented on the Nitrogen Economy
Model within plant Architecture (NEMA) (Bertheloot et al., 2011a),
which is a typical model with several distinct biological function
modules with interactions describing carbon (C) and nitrogen (N)
acquisition by a wheat plant and C and N distributions between
plant organs after flowering. This model has the specificity to
integrate physiological processes governing the N economy within
the plant architecture.

We first recall the principles of the classical SA methods in this
study and detail their extensions specifically deduced for the
analysis of complex models in Section 2. Then, the steps of our
methodology are given in Section 3. Numerical implementation
and the computing cost issue are discussed in Section 4. The case
study of NEMA is illustrated in Section 5, followed by a discussion
in Section 6.

2. Background methods

2.1. Standardized regression coefficient (SRC) method and non-

linearity assessment

The SRC method (Cariboni et al., 2007) is based on the linear
approximation of the model and Monte Carlo simulations. One

Q. Wu, P.-H. Cournède / Ecological Complexity 20 (2014) 219–232220



Download English Version:

https://daneshyari.com/en/article/4372373

Download Persian Version:

https://daneshyari.com/article/4372373

Daneshyari.com

https://daneshyari.com/en/article/4372373
https://daneshyari.com/article/4372373
https://daneshyari.com

