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1. Introduction

Refuges for the prey have been considered for quite some time.
More recently in population dynamics models (Ma et al., 2009a,b;
Sarwardi et al., 2012; Sih, 1987; Wang and Wang, 2012). From a
theoretical point of view, it has been discovered that including
refugia in the ecosystems has generally a stabilising effect on
predator–prey interactions (González-Olivares and Ramos-Jili-
berto, 2012; Maynard-Smith, 1974), where the refugia are
examined in the context of the classical Lotka–Volterra model.
More refined refugia models allow for a logistic growth (Turchin,
2003), and in such cases the unique coexistence equilibrium
becomes globally asymptotically stable (Collings, 1995; González-
Olivares and Ramos-Jiliberto, 2004; González-Olivares and Ramos-
Jilibert, 2003). Also, risky situations that would normally lead to
the extinction of the prey may be prevented by the ready
availability of places or situations where predation is somewhat
lessened. Thus the dynamics of predator–prey systems may be

influenced by the preys use of spatial refuges. This major
behavioral trait of prey response to predators’ hunting could
involve spatial refuges such as burrows or heavy vegetation, that
make them less conspicuous to predators. This is easily achievable
when environmental heterogeneity favors the discovery of sites
that are less accessible for predators (Taylor, 1984), although in
general the latter are available only to a given number of prey.
Other possible strategies to reduce the risk of being captured are
represented by group gathering or simply by reduced movement
that diminishes the encounter rates with predators.

All these features allow a fraction of the prey population to
defend itself against predators, at least in part (Harrison, 1979;
Maynard-Smith, 1974). Denoting by x the prey population and the
amount of prey refugia by xr, so that only x � xr prey are therefore
available for predators’ interactions and hunting, several assump-
tions on the refugia can be made. Indicating with l a positive
constant, it is at first set to a fixed level, xr = l. Alternatively it can
be taken to be proportional to the population size, i.e. xr = lx

(González-Olivares and Ramos-Jiliberto, 2012; Harrison, 1979;
Maynard-Smith, 1974; Taylor, 1984). Finally it can be assumed to
be proportional to the predator density xr = ly (Ruxton, 1995).

In the case of a constant number of refugia, the dynamical
behavior of the neutrally stable Lotka–Volterra model is not
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affected (Maynard-Smith, 1974). However, in a model that in the
absence of prey protection shows oscillatory properties, a large
refuge replaces the cycles by a stable equilibrium (Hassell, 1978).
Refugia in more complex interactions can also induce the presence
of a unique stable limit cycle (McNair, 1986). The Lotka–Volterra
model including self limitation when the number of refugia is
assumed to be proportional to the encounters between prey and
predators, i.e. xr = lxy, has been investigated.

In marine reserves, models for ‘‘pseudo-refuges’’ have been
considered (Cartigny et al., 2008; González-Olivares and Huinca-
hue-Arcos, 2011; Pezzey et al., 2000). This can be achieved by
partitioning the population into two spatially distributed subsets,
so that one of them thrives in a protected area, while the other one
grows in the open access zone (Dubey et al., 2003).

From all these considerations, it is apparent that the effects of
prey refuges on the predator–prey interactions may well be very
complicated.

In this paper we present a new model for prey refugia, based on
the idea that refugia depend on the encounters between prey and
predators. We assume that the interactions between prey and
predator are modelled via a Holling type II function. The latter
models in general a saturation mechanism, whose meaning here is
that the size of the refugia is finite, and the more prey are around,
the less they can take cover, until all the refugia are fully occupied.
In Section 2 we fully analyse this model, in particular discussing all
possible coexistence equilibria configurations.

The second part of the paper, Section 3, contains a slightly more
refined model, allowing for predators intra-specific competition. To
motivate the extension, we provide an example. In the Sundarban (is
the largest single block of tidal halophytic mangrove forest in the
world http://en.wikipedia.org/wiki/Sundarban) Mangrove ecosys-
tem two fish species coexist, detrivorous fish and their carnivorous
fish predators (Ray and Straškraba, 2001). In the major part of the
ecosystem, the detritus is abundantly produced. Here the detrivor-
ous fish can find easy protection in the densely flooded bushy parts
of the forest. In this area the prey and predators coexist at large
population levels. However, observe that there is also a man-
reclaimed part of the forest. Here where much anthropogenic stress
is felt by the ecosystem, bushes are less available. Consequently,
refuge for prey is minimal. The predators can find their prey more
easily and therefore compete with each other to capture their food.

2. The basic model

2.1. System setup

We propose and analyze a modified Lotka–Volterra model with
self-limitation growth, specifically assuming that the quantity of
refugia is proportional to the encounters between prey and
predators, the latter being modelled with a Holling type II response
function. Let x(t), y(t) stand for the prey and predator populations. To
model the amount of refugia xr available for the prey, we consider a
Holling type II response function (Holling, 1965), ux(a + x)�1, which
describes the number of prey escaped against one predator per unit
of time. Here udenotes the prey refuge constant and a is the prey half
saturation constant. The Holling type II response function is more
apt to describe interactions in large populations. It is given by a
hyperbola, rising up to a horizontal asymptote reflecting the
maximum rate at which the prey take cover. The Holling type II
function in general is used to model the phenomenon of predators
satiation, which is experienced when a large population of prey is
available. After a while, the too common prey is avoided, the
predators preferring a more varied diet, if available. Therefore, the
total cover available for the prey can be expressed by the function
xr = uxy(a + x)�1. On the basis of the above discussion, we consider
the following model, assuming that the populations are uniformly

distributed in the environment and disregard other features such as
sex or age structure.

dx

dt
¼ rx 1� x

k

� �
�m 1� uy

aþ x

� �
xy; (1a)

dy

dt
¼ emx 1� uy

aþ x

� �
� d

� �
y: (1b)

All the parameters are positive, defined as follows: r, k, m, e, d stand
respectively for prey intrinsic growth rate, environment’s carrying
capacity, consumption rate, conversion rate, predator death rate.

The first equation contains the prey dynamics, accounting for
logistic growth; the interaction term with predators is assumed to
be of a mass action type, but it is scaled via a factor accounting for
the possibility that some of the prey to take cover when under
attack. The latter, as previously mentioned, is taken in the form of a
Holling type II term. This very same term reappears in the second
equation, containing the predators’ dynamics. In addition, we find
another term accounting for their natural mortality.

2.2. Boundedness

By standard simple arguments, one can show that the solution
of the system (1) always exists and stays positive, that is the
system is dissipative.

From the first equation of (1), we have

dx

dt
¼ rxð1� x

k
Þ �mðx� uxy

aþ x
Þy< rxð1� x

k
Þ< rx

k
ðk� xÞ: (2)

By simple standard arguments we have

limsup
t!þ1

xðtÞ< k:

Next from the second equation of (1), we have

dy

dt
¼ em x� uxy

aþ x

� �
� d

� �
y< emð axþ x2 � uxy

aþ x
Þy; (3)

so it follows that

limsup
t!þ1

yðtÞ< aþ k

u
:

Hence the system is dissipative. Now there exists a T > 0 such
that for all t > T, we have x(t) < k + e = : W and yðtÞ< aþk

u þ e ¼: W1.

Proposition 2.1.

(a) All the solutions of system (1) which initiate in R2
þ are uniformly

bounded.

(b) The following is an invariant compact set

S ¼ ðx; yÞ 2R2
þ : 0 � x � k;0 � y � aþ k

u

� �
:

Proof.

(a) Define the environment’s total population p = x + y. For a
suitable d >m > 0, the following inequalities hold, since
0 < e < 1

dp
dt
þmp ¼ rxð1� x

k
Þ �m x� uxy

aþ x

� �
yþ em x� uxy

aþ x

� �
� d

� �
yþmp

� xðmþ rð1� x

k
ÞÞ � ðd�mÞy�mxyð1� eÞ þmuxy

aþ x
ð1� eÞ;

� k
ðmþ rÞ2

4r
þmuW1ð1� eÞ ¼: f:
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