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Can climate change lead to gap formation?
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1. Introduction

In this note we consider two competing species in a one-
dimensional domain characterized by an environmental gradient
such that species 1 is favoured far to the left (corresponding, say, to
the South) and species 2 is favoured far to the right (corresponding
to the North). One expects that a cline will form as a result, with
species 1 being replaced gradually by species 2 when one moves
from South to North. We indeed establish this property in the
context of a simple reaction-diffusion model for such a situation.
We prove the existence of a stationary solution of the system
showing that the two species coexist in a transition region.

But what do we expect to see when the environmental
conditions themselves are ‘‘on the move’’? In particular, what if
due to climate change the species-specific indicators of local
suitability are not fixed for a given spatial position x but are in fact a
function of x � ct where t denotes time and c is the speed at which
isolines of environmental quality move up North?

In this short note we show that, in this context of the simple
reaction–diffusion system modelling such a situation, gap forma-
tion can occur. By this we mean the following. The speed at which
species 2 is forced to retreat towards the North is exactly c. An
upper bound for the speed with which species 1 can occupy the

region from which species 2 has withdrawn is the Fisher invasion
speed c0. We show here that whenever c0 < c an ever increasing
gap will form in which species 2 is already brought down to a very
low density while species 1 is yet to attain a substantial density.
Thus, in particular, we will see in this case a phase separation such
that, in the limit, the two species do not interact.

The underlying reason is an asymmetry in the effect of a moving
climate depending on whether suitable habitat expands or retracts.
In the first case, the invasion speed sets an upper bound for the
ability to follow, while in the second case the speed of retreat is
forced by the climate and hence is independent of dispersal. Our aim
is to substantiate the claim that the speed of rising cannot exceed the
intrinsic invasion speed by providing simple estimates for solutions
of a system of two reaction–diffusion equations.

By formulating explicitly the theoretical possibility of gap
formation we hope to trigger ecological awareness such that,
perhaps, the phenomenon can be related to actual observations of
shift in competitive balance. Clearly, ecological reality is far more
complex than our simplified description does capture. Here we
focus on the single aspect of a moving competition framework. But
many other phenomena can come into play and deserve to be
studied. For instance, one can imagine that, in addition to climatic
conditions, competition involves food and that the food population
will grow to higher than usual levels in the gap. Thus the
phenomenon may take the form of a moving succession of patterns
involving two speeds, c and c0 and possibly other parameters.

In this paper we report a precise theoretical result and ask
whether it can be related to field observations. The aim here is not
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A B S T R A C T

Consider a situation where spatial heterogeneity leads to a cline, a gradual transition in dominance of

two competing species. We first prove, in the context of a simplified competition–diffusion model, that

there exists a stationary solution showing that the two species coexist in a transition zone. What

happens then if, owing to climate change, the environmental profile moves with constant speed in

space? We show here that, when the speed with which the environmental condition shifts exceeds the

Fisher invasion speed of the advancing species, an expanding gap will form. We raise the question of

whether such a phenomenon has been or can be observed.
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to survey the manifold aspects of modelling the impact of climate
change on population dynamics. The recent references (Leroux et
al., 2013; Sorte, 2013) provide an entrance to the rapidly growing
literature. The modelling approach of the present paper overlaps
with the approach in the references (Berestycki et al., 2009;
Lutscher et al., 2007, 2010; Potapov and Lewis, 2004; Vasilyeva
and Lutscher, 2012; Zhou and Kot, 2011).

In a subsequent work we plan to study the case when c < c0 for
which we prove that coexistence occurs in the form of a joint
travelling wave solution. Here, we already study the existence of
stationary solutions for the case c = 0. More precisely, for 0 � c < c0,
we intend to establish in Berestycki et al. (in preparation) the
existence, uniqueness and global stability of a traveling wave
solution uðx� ctÞ; vðx� ctÞ of speed c for the system (1) and (2)
below. This behavior is illustrated by numerical simulation in
Section 5 below (compare Fig. 5). Here, we prove the case c = 0.
Thus, this case gives rise to a different behavior from the one we
derive here.

2. Cline formation

We consider the system of two equations:

@tuðt; xÞ � d1 @xxuðt; xÞ ¼ uðt; xÞ ðr1ðx� ctÞ � uðt; xÞ � vðt; xÞÞ; (1)

@tvðt; xÞ � d2 @xxvðt; xÞ ¼ vðt; xÞ ðr2ðx� c tÞ � uðt; xÞ � vðt; xÞÞ: (2)

Here, t 2Rþ; x2R;u :¼ uðt; xÞ and v :¼ vðt; xÞ are the number
densities of two different species, d1, d2 > 0 are their respective
diffusion rates. The per capita growth rates (when u ¼ v ¼ 0) r1; r2 :

R!R satisfy the following conditions: r1, r2 are continuous,
monotone, with values in [� L, K], and have the following limits

r1ð�1Þ ¼ K >0; r1ðþ1Þ ¼ �L<0;

r2ð�1Þ ¼ �L; r2ðþ1Þ ¼ K:
(3)

Here K, � L represent the asymptotic (when x!�1) low density
growth rates of the species.

We begin with a result concerning the situation when c = 0. We
show that in that case, there exists a nontrivial steady state for
system (1) and (2), in which the first species (u) is dominant when
x!�1, and the second species (v) is dominant when x! +1.
More precisely, we show the following result.

Theorem 1. We consider the system (1) and (2), when c = 0, that is

@tuðt; xÞ � d1 @xxuðt; xÞ ¼ uðt; xÞ ðr1ðxÞ � uðt; xÞ � vðt; xÞÞ; (4)

@tvðt; xÞ � d2 @xxvðt; xÞ ¼ vðt; xÞ ðr2ðxÞ � uðt; xÞ � vðt; xÞÞ: (5)

Then, there exists a stationary solution to system (4)–(5), denoted by

(U(x), V(x)), such that 0 � U(x), V(x) � K. Moreover, U is decreasing on

R, V is increasing on R, and limx!�1 UðxÞ ¼ K; limx!�1 VðxÞ
¼ 0; limx!þ1 UðxÞ ¼ 0; limx!þ1 VðxÞ ¼ K.

This theorem is proven in Section 4.
In the forthcoming paper (cf. Berestycki et al. (in preparation)),

we shall study the issues related to uniqueness and global stability
for system (4)–(5), and make more precise the asymptotic behavior
of U and V.

3. Gap formation

We now consider c > 0 a given constant. For the initial value
problem we complement the system (1)– (2) with some suitable
initial data

uð0; xÞ ¼ u0ðxÞ; vð0; xÞ ¼ v0ðxÞ; for all x2R: (6)

In the absence of species 2, and if r1 were the constant given by
r1(x) � K, then the classical Fisher – KPP invasion speed of u would
be given by

c0 :¼ 2
ffiffiffiffiffiffiffiffiffi
d1 K

p
:

In the present note we focus on the case c > c0, that is, when there
is a fast change of climate. The aim is to provide estimates that
characterize the large time behaviour. Our main result states that
in a region of asymptotic size (c � c0) t the density of individuals of
both species decreases exponentially. Accordingly we call this
region a gap. Thus, there is a phase separation with widening gap.
We now state precisely the result.

Theorem 2. Assume c > c0. Let u0; v0 2 L1ðRÞ (that is, u0 and v0 are

bounded) be initial data such that for all x2R;u0ðxÞ�
0; v0ðxÞ�0;u0ðxÞ; v0ðxÞ � K and the support of u0 is bounded from

above, that is, there exists R2R such that u0(x) = 0 for all x � R.

Then the unique bounded solution of Eqs. (1)–(2) with the initial

condition (6) satisfies for all t�0; x2R: uðt; xÞ�0; vðt; xÞ�
0;uðt; xÞ; vðt; xÞ � K. Furthermore, for all c1, c2 satisfying

c0 < c1 < c2 < c, and for all constants b1; b2 2R

8 t�0; sup
x� c1 tþb1

uðt; xÞ � A1 e�a1 t; (7)

8 t�0; sup
x�c2 tþb2

vðt; xÞ � A2 e�a2 t; (8)

where the positive constants A2, a2 > 0 only depend upon

K; L; r�1
2 ð�L=2Þ; d2; c; c2; b2 and A1, a1 > 0 only depend upon K, d1,

c1, b1, R.

This theorem is proved in Section 4.
Remarks.– (i) Actually, the assumption u0ðxÞ; v0ðxÞ � K is used

only for presentation convenience, the proof below can be adapted
to the more general case of merely bounded nonnegative initial data.

(ii) The condition that the support of u0 be bounded from above
by some R could also be replaced by the hypothesis of a sufficiently
fast exponential decay for the right tail of u0.

(iii) Lastly, the assumption that�L � r1, r2 � K is not needed, and
the same is true for the assumption that r1, r2 are monotone. We
assume it here to somewhat simplify the argument. However, the
result holds only under the requirement of the limiting conditions
(3). This will be further detailed in Berestycki et al. (in preparation).

(iv) In that paper, we also intend to show that in the present
case c0 < c, then, c0 and c are sharp in the following sense. First for
all u0; v0 with u0 X 0, let g1 be any real such that g1 < c0 < c, then,

limft!1;�g1t�x�g1tguðt; xÞ ¼ K;

Likewise, for all u0; v0 with limfx!1gv0 >0, let g2 be any real such
that c0 < c < g2, then,

limft!1; x�g2tgvðt; xÞ ¼ K:

Thus, c is the exact asymptotic speed of retreat of v and c0 is the
exact asymptotic speed of advance of u.

4. Proof of the theorems

Proof of Theorem 1: We start with a lemma in which we
summarize the results of existence, uniqueness and qualitative
behavior for one reaction–diffusion equation with inhomogeneous
coefficients of the type:

�d @xxwðxÞ ¼ wðxÞ ðRðxÞ �wðxÞÞ: (9)
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