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1. Introduction

Spatial pattern formation by spatiotemporal models of predator–
prey interaction has received significant attention from several
researchers during last three decades. Intense research works have
been initiated based upon the classical works of Segel and his
coworkers (Levin and Segel, 1976; Segel and Jackson, 1972), who had
first explained the plankton patchiness based upon the mathemati-
cal result, namely, diffusive instability. The concept of diffusive
instability was introduced by A. Turing in his seminal work (Turing,
1952) to explain the chemical basis of morphogenesis. Turing
explained how small amplitude heterogeneous perturbation from
the stable homogeneous steady-state of a reaction–diffusion system
can lead to instability, known as diffusive instability, and results in
Turing patterns. This concept is utilized to explain the formation of
stationary and non-stationary patchy patterns, known as spatial
pattern, by the individuals of prey and predator species when we

incorporate their random movement into our modeling approach.
The reaction–diffusion models of population interaction are built up
to incorporate random mobility of the individuals of species into the
modeling approach of interacting populations. Reaction part takes
care of intra- and inter-species interactions whereas the random
movement of the individuals within their habitat is modeled with
the diffusion term. The formation of such models is based upon the
Fick’s law (Grindrod, 1996). The reaction–diffusion models of
population interaction with appropriate initial and boundary
conditions are capable to produce spatial patterns due to Turing
instability (Murray, 2002; Malchow et al., 2008; Okubo and Levin,
2001). Apart from the stationary Turing pattern formation, the non-
stationary and spatiotemporal chaotic patterns are also capable to
explain the patchy distribution of the species (Banerjee and
Banerjee, 2012; Banerjee and Petrovskii, 2011; Baurmann et al.,
2004, 2007; Camara, 2011; Morozov et al., 2004; Petrovskii et al.,
2004; Petrovskii and Malchow, 1999; Sherratt et al., 1997, 1995;
Tian, 2010; Tian and Zhang, 2013, 2013; Upadhyay et al., 2012).

Initial research on the reaction–diffusion models of predator–
prey interaction were focused towards the derivation of Turing
instability condition and determination of the resulting stationary
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A B S T R A C T

In this paper, first we consider the global dynamics of a ratio-dependent predator–prey model with

density dependent death rate for the predator species. Analytical conditions for local bifurcation and

numerical investigations to identify the global bifurcations help us to prepare a complete bifurcation

diagram for the concerned model. All possible phase portraits related to the stability and instability of

the coexisting equilibria are also presented which are helpful to understand the global behaviour of the

system around the coexisting steady-states. Next we extend the temporal model to a spatiotemporal

model by incorporating diffusion terms in order to investigate the varieties of stationary and non-

stationary spatial patterns generated to understand the effect of random movement of both the species

within their two-dimensional habitat. We present the analytical results for the existence of globally

stable homogeneous steady-state and non-existence of non-constant stationary states. Turing

bifurcation diagram is prepared in two dimensional parametric space along with the identification

of various spatial patterns produced by the model for parameter values inside the Turing domain.

Extensive numerical simulations are performed for better understanding of the spatiotemporal

dynamics. This work is an attempt to make a bridge between the theoretical results for the

spatiotemporal model of interacting population and the spatial patterns obtained through numerical

simulations for parameters within Turing and Turing–Hopf domain.
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patterns by perturbing the stable homogeneous steady-state with
small heterogeneous perturbations. Most of the time one can find
stationary spot pattern (hot spot or cold spot) as a resulting pattern
for parameters within the Turing domain (Alonso et al., 2002;
Banerjee, 2010; Fasani and Rinaldi, 2011; Sun et al., 2009; Wang
et al., 2007; Volpert and Petrovskii, 2009). It is interesting to note
that the instability of steady-state for temporal models of
predator–prey interaction leads to either oscillatory coexistence
state or extinction of one or both the species. However the
instability of the homogeneous distribution of the species, due to
the movement of the individuals, leads to stationary as well as non-
stationary distribution over the space depending upon the intrinsic
rate constants and the rates of diffusion. Non-stationary distribu-
tion of the species is characterized by periodic, quasi-periodic or
chaotic change in the population distribution with the advance-
ment of time. Stationary and non-stationary patterns can be
classified as hot spot pattern, cold spot pattern, labyrinthine
pattern, stripe pattern, target pattern, spiral pattern, tip-splitting
pattern, interacting spiral pattern and chaotic pattern (Banerjee
and Banerjee, 2012; Cantrell and Cosner, 2003; Malchow et al.,
2008; Shoji et al., 2003; Shoji and Iwasa, 2005; Upadhyay et al.,
2010). These wide varieties of patterns are already reported by
several researchers based upon their works on reaction–diffusion
models of predator–prey interactions (Alonso et al., 2002; Banerjee
and Banerjee, 2012; Banerjee and Petrovskii, 2011; Baurmann
et al., 2004, 2007; Camara, 2011; Fasani and Rinaldi, 2011;
Petrovskii et al., 2004; Petrovskii and Malchow, 1999; Sherratt
et al., 1997; Wang et al., 2007). Interestingly one can find only spot
pattern for parameter values lying within the Turing domain only
and rest of the patterns appears for parameter values within the
Turing–Hopf domain, outside the Turing domain and also as a
result of specific choices of initial condition (Malchow et al., 2008;
Medvinsky et al., 2002). It is well-known fact that Turing instability
is not the only mechanism for spatial patterns rather biological
invasion, turbulence, travelling wave, periodic travelling wave are
also responsible mechanisms (Malchow et al., 2008; Sherratt and
Smith, 2008; Shigesada and Kawasaki, 1997; Volpert et al., 1994).
In reality the distribution of population over their habitat is far
away from the homogeneous steady-state and hence investigation
of spatial patterns due to the arbitrary choice of initial condition
(which includes large magnitude perturbation from the homoge-
neous steady-state (Banerjee, 2011; Riaz et al., 2007)) is not
coming under the heading of Turing pattern formation (Banerjee,
2011). As a result the investigations of non-Turing patterns are
more realistic from theoretical point of view as well as relevant in
the context of ecology.

The conditions for the Turing bifurcation and Turing–Hopf
bifurcations can be obtained through local stability analysis
around the specific homogeneous steady-state (Wang et al.,
2007). These analytical results are unable to predict the generation
of spatial patterns due to large spatiotemporal perturbation from
the homogeneous steady-state. There exist some analytical
techniques to derive mathematical criteria for the stability of
homogeneous steady-state and derivation of appropriate condi-
tions for the existence and/or non-existence of non-constant
stationary states (Pang and Wang, 2003; Peng and Shi, 2009; Peng
et al., 2008; Shi, 2002; Shi et al., 2010; Smoller, 1994; Wang et al.,
2011). These techniques are already utilized by the researchers to
obtain analytical results for some spatiotemporal models of
interacting populations but those results are not cross verified
with the scenario of spatial pattern formation for specific choices of
the parameters involved with the targeted models. Most of the
researchers overlooked this important as well as interesting aspect
only due to the complicated nature of the desired analytical results.
Another notable issue is that the analytical results involved with
the parametric restrictions to be satisfied for the stability of

homogeneous steady-state and the existence of non-constant
steady-state are sufficient conditions. These conditions only
helpful to understand the long time survival of the species at
some positive steady-state.

Based upon the above mentioned facts, in this paper we have
considered a spatiotemporal model of predator–prey interaction
with ratio-dependent functional response and density depen-
dent death rate for the predator. In Sections 2 and 3, we have
described the basic dynamical features of the temporal counter-
part to understand the stable and oscillatory coexistence for both
the species. Special attention have been paid to study all possible
dynamic behaviors those can be exhibited by the solution
trajectories of the temporal model with the help of complete
global bifurcation analysis. The spatiotemporal model is intro-
duced in Section 4 and we have provided analytical results for the
global stability of homogeneous steady-state and obtained the
conditions required for the non-existence of non-constant
steady-state. Detailed proofs of the analytical results are
presented at Appendix. The preliminary results for Turing
instability are also discussed in brief. Exhaustive numerical
simulations are carried out to obtain the spatiotemporal patterns
for parameter values lying within the Turing and Turing–Hopf
domain and outcomes are reported in Section 5. Detailed
discussions about various results obtained throughout this paper
are presented at the discussion section and some future
directions are also mentioned.

2. Temporal model

The temporal model for predator–prey interaction with ratio-
dependent functional response (Akcakaya et al., 1995; Arditi and
Ginzburg, 1989; Bandyopadhyay and Chattopadhyay, 2005;
Berezovskaya et al., 2001; Hsu et al., 2001; Sen et al., 2012; Xiao
and Ruan, 2001) and density dependent death rate for the
predator (Bazykin, 1998; Freedman, 1979; Pal et al., 2012) is
governed by the following system of nonlinear ordinary differen-
tial equations

du

dt
¼ uð1� uÞ � auv

uþ v
; (1a)

dv

dt
¼ buv

uþ v
� gv� dv2; (1b)

subjected to the positive initial condition uð0Þ; vð0Þ > 0. Here a, b,
g and d are all dimensionless and positive parameters. Here u, v are
dimensionless variables representing the population densities of
the prey and predator and t stands for dimensionless time. The
dimensionless parameters can be interpreted as: a is the rate of
predation, b is growth rate of the predators, g is linear intrinsic
death rate of predator and d is the intra-specific competition rate
for the predators. Hence ‘g þ dv’ is the density dependent death
rate for the predator.

The above mentioned model (with g = 0) is studied in the
context of spatiotemporal pattern formation by Baurmann et al.
(2007) and then studied by Haque (2009) with a different
parametrization. The ratio-dependent functional response is
relevant in the situation when the predators have to search for
prey and hence have to compete among themselves to search for
their food. Hence in this context it is quite relevant to study a ratio-
dependent prey–predator model with density dependent death
rate for the predator as such kind of death rate is known to regulate
or restrict the unlimited growth of the predators (Freedman, 1979;
Peet et al., 2005). In some literature (see McGehee and Peacock-
Lopez, 2005; Mcgehee et al., 2008) the quadratic mortality term
(dv2) is called as mutual interference of predators and higher-order
terms are not biologically realistic (Neubert et al., 2004). Various
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