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1. Introduction

A variety of dynamical systems are characterized by patterns in
space and time (Cross and Hohenberg, 1993). Specifically, spatially
periodic stationary patterns have been observed in thermal fluid
convection (Kolodner, 1993), chemical reactions (Kærn and
Menzinger, 2002; Berenstein et al., 2003; Yochelis and Sheintuch,
2009), optical systems (Staliunasa and Sánchez-Morcillob, 2000),
embryonic development (Afek et al., 2011) and vegetation patterns
(Valentin et al., 1999), to name but a few examples. In ecology and
evolution, the emergence of stationary spatial patterns is
particularly important because a continuous trait or niche axis
may play the role of space (Levin and Segel, 1985). Specifically,
evolution of a continuous trait may result in the selection of several
trait values, a process that promotes species packing around these
values (community-wide character displacement (Dayan and
Simberloff, 2005)). This results in a nonuniform, multi-peaked
population abundance along the trait axis (Levin and Segel, 1985).

To model resource competition over a continuous niche axis,
several papers (Sasaki, 1997; Fuentes et al., 2003; Pigolotti et al.,
2007; Scheffer et al., 2006) assumed that each trait fits a particular
niche (resource type) and considered continuous Lotka–Volterra

dynamics similar to

drðxÞ
dt
¼ rðxÞ 1 �

Z 1
�1

gðx � x0Þrðx0Þdx0
� �

; (1)

where r(x, t) is a density function on x for the population
abundance at time t and g(x � x0) is a normalized kernel
characterizing the magnitude of competitive interference between
an individual at x and an individual at x0 (e.g., g(x) = exp(� jxjg)/R

exp(� jxjg)). Previous studies showed that the uniform solution
r(x) = 1 is stable if g is sufficiently ‘‘sharp’’ in its peak (g � 2), but is
unstable to spatial, nonuniform perturbations in r(x) if g is
sufficiently ‘‘rectangular’’ (g > 2), leading to a spatially periodic
stationary pattern (Fuentes et al., 2003; Pigolotti et al., 2007). In Eq.
(1), x may be interpreted as a location in space, but may also be
interpreted as a trait value, where each trait fits a particular niche
along a corresponding continuous axis of available niches. Each
peak of r(x) corresponds to a pack of species, created where a
particular trait value is selectively favored and is consequently
becoming more abundant.

In this paper, we reveal a wide family of dynamics that
approach stable, nearly periodic, stationary spatial patterns. We
show that those dynamics do not encompass an unstable single-
peaked or uniform stationary solution; rather, a positive single-
peaked solution does not exist due to the presence of some
‘‘singular point’’ where some parameter changes steeply along the
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A B S T R A C T

For many years, scientists have tried to understand the ubiquitous discrete nature of traits. As the

emergence of nonuniform patterns in space via instability of the uniform pattern to spatial perturbations

is well-understood in reaction–diffusion systems, several studies have suggested that a similar

instability underlies discrete distributions of traits. In contrast, here we suggest that a different

mechanism may underly species’ discrete distributions of trait values. We show that a point where niche

availability changes sharply along the continuous niche axis promotes the discretized distribution of

trait values even far from that point. In certain cases, this mechanism may apply also to patterns of

population densities over space, such as patterns that were observed in vegetation biomass, as locations

where environment changes sharply may promote spatially, nearly periodic stationary patterns.
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x-axis. We suggest that singular points play a major role in the
coevolution of continuous traits and may underly species packing.

2. Competition over a nonuniform resource

We consider dynamics somewhat similar to Eq. (1), but to avoid
instability to nonuniform perturbations, we consider resource
explicitly as a separate variable:

drðxÞ
dt

¼ rðxÞ
R1
�1 rðx0Þgsðx � x0Þdx0 � mrðxÞ þ mrrxxðxÞ;

drðxÞ
dt

¼ ISðxÞ � rðxÞ
R1
�1 rðx0Þgsðx � x0Þdx0 þ mrrxxðxÞ;

(2)

where r(x) is again the population abundance, r(x) is the resource
concentration, m is a constant mortality rate, rxx and rxx are the
second partial derivatives of r and r with respect to x and IS(x) is the
resource influx, which is changed near x = 0 and is given by a
sigmoidal curve that monotonically increases from zero at values of
x much smaller than minus S to one at values of x much larger than
S (Fig. 1). According to one interpretation, r(x) is the abundance of
vegetation at a distance x from the location where the environment
or the ground changes, r(x) is the concentration of water, mr and mr

are the respective diffusion coefficients and gs(x � x0), a normalized
symmetric kernel with standard deviation s, is the ability to absorb
water at x0 by the roots of a given vegetation located at x. According
to another, alternative interpretation, x is a trait value along a
continuous niche axis, r(x) is still the resource concentration, where
a resource of type x is the most suitable for an individual with a trait
value x (specifically, species x consumes resources x0 that are
suitable to its trait according to gs(x � x0)), and mr and mr are the
respective mutation rates.

Without the environmental change, namely if the resource influx
rate is uniform, IS(x) = I, there are two uniform steady state, r(x) = 0,
which is unstable, and r(x) = I/m, which is stable against uniform
perturbations. Our numeric examination shows that it is also stable
against spatial perturbations even when the kernel g is rectangular
(in contrast to the Lotka–Volterra expectation from Eq. (1)). With
the environmental change at x = 0, however, Eq. (2) has a solution
that changes from zero at sufficiently negative values of x to 1/m at
sufficiently large positive values of x (Fig. 2). The nontrivial question
is how this change occurs over space, or how the population is
distributed not very far from the singularity at x = 0.

Numerical solutions of Eq. (2) show that if the environment
changes gradually, over much larger spatial scales than the
interaction kernel (S � s), then the steady state population
abundance changes almost monotonically from zero to 1/m
(Fig. 2, left inset). However, if the environment changes sharply,
over the same spatial scale of the interaction kernel (S � s), Eq. (2)
still has a stable steady state solution, but this solution is now multi-
peaked and comprises spatial oscillations near the singularity at
x = 0 (Fig. 2, right inset). These oscillations are gradually diminished
along space as x increases, until the uniform solution, r(x) = 1/m, is
approached far from the singularity, at large values of x. The case
where the environment changes sharply, on the same spatial scale
of the interaction kernel can be realized at a hilltop, on a cliff, or at
any other location where a change in the soil leads to a sharp change
in water infiltration. Alternatively, according to the niche interpre-
tation, sharp changes in IS(x) are typical when some resource types
or niches are absent from a given environment, for example, if there
are no resources smaller than or larger than a given size.

3. Singular points induce lumpy patterns

We prove mathematically (Supplementary Material (SM)) that
the emergence of multi-peaked pattern for a sufficiently sharp
environmental change applies to any smooth symmetric kernel g

that satisfies g0(jxj) � 0 (Fig. 3A and B). For a non-smooth kernel
(e.g., where g0(0) is undefined) this theorem does not apply (Fig. 3C;
(Barabás et al., 2013)). The underlying idea is that, for extreme
environmental change (S ! 0) and without diffusion or migration
(mr = 0), the steady state solution of Eq. (2) satisfies

rðxÞ ¼ 0 or

Z 1
0

rðx0Þgsðx � x0Þdx0 ¼ m (3)

for all x. The solution r(x) = 0 for all x is unstable where x is positive
because IS(x) = 1 where x < 0, and then r(x) is sufficiently large to
support the growth of small populations. At the same time,
however, the solution of the integral comprises both positive and
negative parts, whereas r(x) is positively defined (SM). We show that
near the singularity, any steady state solution of Eq. (2) comprises
intervals where r(x) = 0 and a discrete set, xi, where r(x) has zero-
width peaks (delta functions). As the diffusion coefficients increase,
the widths of the peaks also increase, and the length over which the
pattern approaches the uniform solution decreases.
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Fig. 1. Environment may change gradually or sharply over space or niche axis. The

sigmoidal function ISðxÞ ¼ 1
2þ 1

2 erfðx=SÞ is demonstrated for various values of S. A

large S characterizes a gradual change in the environment or in the resource influx,

while a small S characterizes a sharp change. Where S ! 0, IS becomes a step

function: resource is uniformly supplied where x > 0, and is not supplied where

x < 0.
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Fig. 2. Points where environmental gradient is sharp promote lumpy stationary

spatial patterns. For gradual environmental gradients, where S � s, steady state

species abundance is monotone (left inset), whereas sharp environmental

gradients, S � s, lead to a lumpy steady state abundance (right inset). We

emphasize that the monotone steady state does not lose stability, but rather, it no

longer exists when environmental gradients become sufficiently sharp. We

emphasize that this figure does not show a bifurcation as the unimodal solution

does not lose stability; rather, it gradually becomes more lumpy, as indicated from

the smooth shape of the graph. Parameters: m = 1, mr = 2 �104, mr = 0.1 and gðxÞ ¼
ð
ffiffiffiffiffiffiffiffiffiffi
2ps
p

Þ�1
expðx2=2s2Þ (Gaussian).
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