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1. Introduction

Population dispersal in patchy environment is one of the most
prevalent subjects in ecology and mathematical ecology. Within
each patch, individuals of each species are supposed to be identical
and can migrate to other patches. In most previous papers,
population dynamics with the effects of heterogeneity modeled
by the diffusion process is focused on the dynamical system modeled
by ordinary differential equations and delay differential equations
(Cui et al., 2004; Xu and Ma, 2008; Cui and Chen, 2001; Zhou et al.,
2008; Ding and Han, 2008; Chen et al., 2003; Song and Chen, 1998;
Xu et al., 2004). But in reality, dispersal behavior is very intricate and
is always perturbed by environmental change and human activities,
etc. In fact, it is often the case that diffusion occurs during short-time
slots within seasons or within the lifetimes of animals. In order to be
in much better agreement with the real ecological process, this
short-time scale dispersal is more suitable assumed to be in the form
of regular pulses. Taking birds as an example, when winter comes,
they will diffuse between patches in search for a better environment,

but they do not migrate in other season. Thus impulsive diffusion
provides a more natural description for this behavior. With the
developments and applications of impulsive differential equations,
theories of impulsive differential equations have been introduced
into population dynamics, and some important studies about
impulsive diffusion have been done (Shao, 2010; Jiao et al., 2011,
2011, 2011; Jiao and Cai, 2009a; Hui and Chen, 2005; Wan et al.,
2012; Wang et al., 2007; Dong et al., 2007; Zhang et al., 2013; Zhao
et al., 2011). In particularly, a single population was considered (Hui
and Chen, 2005; Wan et al., 2012; Wang et al., 2007; Dong et al.,
2007; Zhang et al., 2013; Zhao et al., 2011). For example, Zhao et al.
(2011) studied the following single species model with impulsive
diffusion and pulsed harvesting at the different fixed time

dx1ðtÞ
dt

¼ r1x1ðtÞ � a11x2
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A B S T R A C T

Based on the predator–prey system with delayed stage-structured for preys and impulsive harvesting

and impulsive diffusion for predator, an impulsive delayed differential equation to model the process of

periodic harvesting and impulsive diffusion at different fixed moments is proposed and investigated. In

this model, patches are created by two different prey populations and each prey population is confined to

a particular patch while the predator population can impulsively diffuse between two patches. By using

comparison theorem of impulsive delayed differential equation and some analysis techniques, sufficient

conditions ensuring the existence of preys-extinction periodic solution and the permanence of the

system are established. Our analysis reveals that low birth rates of immature preys, high death rates of

immature and mature preys, long maturation time of immature preys to mature preys and large preys’

captured rates are the sufficient condition for the preys-extinction. On the contrary, if we largen the birth

rates of immature preys, or decrease the death rates of immature and mature preys, or shorten the

maturation time of immature preys or decrease the preys’ captured rates, then the system can become

permanent under proper predational strategies. These also show that it is feasible to keep the sustainable

development of the ecosystem by controlling the critical ecological parameters. Numerical simulations

with hypothetical set of parameter values are carried out to consolidate the analytic findings.
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In this model, suppose that the system is composed of two patches
connected by diffusion. xi(t) presents the biomass of the population
in patch i(i = 1, 2). r1 denotes the intrinsic growth rate in the first
patch and r2 is the death rate in the second patch. r1/a11 is the
environment carrying capacity. 0 < E < 1 is the harvesting effort of
the population in the first patch at t = (n + l � 1)T(0 < l < 1).
0 < D < 1 is the diffusion coefficient. If xi > xj(i 6¼ j, i, j = 1, 2), the
population in patch i diffuses into patch j at a rate D which is
proportional to xi � xj. T is the impulsive diffusion period.
Dxi(nT+) = xi(nT+) � xi(nT)(i = 1, 2). xi(nT+)(i = 1, 2) represents the
density of the subpopulation in patch i after the nth diffusion pulse
at t = nT, while xi(nT)(i = 1, 2) represents the density of the
subpopulation in patch i immediately before the nth diffusion
pulse at t = nT. By using the stroboscopic map, they obtained the
existence and globally asymptotical stability of both the trivial
solution and the positive periodic solution, and the complete
expression for the periodic solution.

On the other hand, from birth to death, many species usually go
through two life stages, immature and mature. So it is practical to
introduce stage-structured into prey–predator models (Aiello and
Freedman, 1990; Song and Chen, 2002; Meng et al., 2008; Song and
Xiang, 2006; Chen and You, 2008; Shao and Dai, 2010; Huang et al.,
2012; Song et al., 2009; Liu et al., 2008; Wang et al., 2009). In
additional, as literatures (Li and Kuang, 2001) pointed out that the
delay differential equation shows much more complicated dynam-
ics than ordinary differential equation since time delay could cause a
stable equilibrium to become unstable and cause the population to
fluctuate. Therefore it is reasonable to introduce delayed stage
structure into prey–predator models (Meng et al., 2008; Song and
Xiang, 2006; Chen and You, 2008; Shao and Dai, 2010; Huang et al.,
2012; Song et al., 2009; Liu et al., 2008; Wang et al., 2009). Newly,
population dynamical system involving delayed stage structure and
impulsive diffusion have been discussed by some authors, see Jiao
(2010), Shao and Li (2013), Jiao et al. (2009b), Dhar and Jatav (2013),
Jiao et al. (2010), and references cited therein.

Furthermore, in real nature, some lower-order preys can
establish their own territory and does not interact with other preys,
whereas the predator can diffuse between the territories at a fixed
moment. Therefore in this paper, we consider a three-species (two-
prey and a predator) ecological model with impulsive harvesting

and impulsive diffusion at different fixed moments. To formulate the
mathematical model, we make the following assumptions:

A1 The patches are created by two prey populations, and each prey
population is confined to a particular patch while the predator
population can diffuse between two patches. Predator has two
different impulsive time. In the first impulsive time, we only
harvest the predator in the first patch. And in the second
impulsive time, the predator population will migrate from one
patch to other patch.

A2 The prey populations: each prey population have two life stage,
namely immature and mature stages. The birth rates into the
immature population are proportional to the existing mature
population with a proportionality a1 in patch 1 and a2 in patch
2, respectively; and the death rates of the immature population
are proportional to the existing immature population with a
proportionality v1 in patch 1 and g1 in patch 2, respectively; the
death rates of the mature population are proportional to the
existing mature population with a proportionality v2 in patch 1
and g2 in patch 2, respectively; the intra-specific competition
rates of the mature prey populations are proportional to square
of the population with a proportionality d1 in patch 1 and d2 in
patch 2, respectively.

A3 The predator population: in the absence of the prey popula-
tions, the predator population in the first habitat grows
according to the logistic curve with the intrinsic birth rate b1

and density dependence rate a1. Whereas the predator
subpopulation in the second patch will die with the death
rate b2. The predator populations only feed on the mature preys
following Holling type-I functional response with different
capturing rates c1 in patch 1 and c2 in patch 2, respectively. The
conversion factor for predator population due to consumption
of prey is ki(i = 1, 2) in the ith (i = 1, 2) patch.

In the natural world, these assumptions are reasonable for
many species whose immature prey population conceal in the cave
and are raised by their parents; the rate of predator attacking at
immature prey can be ignored. Considering the above basic
assumptions, we can derive the following differential equations:

dx1ðtÞ
dt

¼ a1x2ðtÞ � a1e�v1t1 x2ðt � t1Þ � v1x1ðtÞ

dx2ðtÞ
dt

¼ a1e�v1t1 x2ðt � t1Þ � v2x2ðtÞ � d1x2
2ðtÞ � c1x2ðtÞz1ðtÞ

dy1ðtÞ
dt

¼ a2y2ðtÞ � a2e�g1t2 y2ðt � t2Þ � g1y1ðtÞ

dy2ðtÞ
dt

¼ a2e�g1t2 y2ðt � t2Þ � g2y2ðtÞ � d2y2
2ðtÞ � c2y2ðtÞz2ðtÞ

dz1ðtÞ
dt

¼ z1ðtÞ½b1 � a1z1ðtÞ� þ k1c1x2ðtÞz1ðtÞ

dz2ðtÞ
dt

¼ �b2z2ðtÞ þ k2c2y2ðtÞz2ðtÞ
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