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1. Introduction

Demographic stochasticity due to the probabilistic nature of
events such as births, deaths, mating and disease transmission,
plays a major role in the dynamics of small populations. Its
impact was acknowledged more than fifty years ago by Bartlett
(Bartlett, 1957), who introduced the concept of critical commu-
nity size. Originally defined as the population size above which
the expected time to fade out after an epidemic exceeds a certain
period, it is usually taken in more general terms as the threshold
population for (a given definition of) disease persistence. It
became a central concept in epidemiology, much revisited in
several attempts to provide less arbitrary definitions and to
reconcile theoretical estimates with data (Keeling and Grenfell,
2002; Nåsell, 2004). Threshold levels of host abundance are
equally important in ecology, a context in which the idea of the
stochastic Allee effect was introduced (Lande, 1998) to represent
demographic stochasticity.

The fact that many natural populations experience annual
abundance troughs establishes an obvious connection between
average population size and extinction probability, on one hand,
and seasonality, on the other (Yorke et al., 1979). Indeed, the
annual and multiannual incidence patterns of many infectious
diseases show that seasonality is a key ingredient in the overall
dynamics of these diseases. Despite the mathematical difficulties

involved, theoretical studies have therefore tried to take seasonal-
ity into account ever since the earliest efforts (Soper, 1929). The
complex interplay between seasonal forcing and the system’s
nonlinearities is nowadays reasonably well understood, setting the
stage for the additional layer of complexity that arises from
demographic stochasticity (Stone et al., 2007; Conlan and Grenfell,
2007; Mantilla-Beniers et al., 2010).

Another key ingredient for population persistence is spatial
structure and heterogeneity. Spatial structure was first addressed
using reaction-diffusion equations that successfully modelled the
spread of the epizootic in animal borne diseases (Källén et al.,
1985). In these models, inspired by physical systems, the
interactions are local and the population is distributed on a plane.
More recently, developments that explore the role of individual
mobility and long range interactions have come up in the form of
metapopulation models, where a number of typically weakly
interacting units represent well mixed homogeneous population
patches (Grenfell and Harwood, 1997; Hanski, 1998; Levins, 1969;
Lloyd and May, 1996; Riley, 2007; Balcan et al., 2009). A long
standing idea associated with the concept of metapopulation is
that persistence is favoured in a fragmented population, provided
that movement between patches accompanies spatial dispersion
(Bolker and Grenfell, 1995; Hanski, 1999). This idea has recently
been shown to be less straightforward than previously thought
(Hagenaars et al., 2004; Jesse and Heesterbeek, 2011).

Among many aspects treated in these studies on spatially
extended systems, the degree of synchrony of population
abundance oscillations has received special attention as it has
been considered the main determinant of persistence (Grenfell
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et al., 1995; Blasius et al., 1999; Grassly and Fraser, 2006). With few
exceptions associated with chaotic oscillations, it has been found
that a small amount of coupling between population patches is
enough to induce synchrony (Earn et al., 1998; Viboud et al., 2006;
Grenfell et al., 2001; Lloyd and May, 1996). Although they are
usually called spatially heterogeneous, the metapopulation models
in these studies assume the same, or very similar, parameter values
for the different population patches, and we will refer to them as
’uniform’, keeping the term ’heterogeneous’ for extended systems
that include significant parameter variation across different
patches. In line with available data for large urban populations
(Viboud et al., 2006; Mantilla-Beniers et al., 2010), the synchro-
nized oscillations in uniform systems are moreover found to be in
phase between patches, or, in the case of the 2-year cycle typical of
measles, in phase opposition. This is in contrast with the results for
heterogeneous systems, where synchronous states may corre-
spond to intermediate phase lags (Blasius et al., 1999; Rozhnova
et al., 2012).

In this paper we present an extensive computational study of
the combined influence of seasonality and heterogeneity on
disease persistence. The basic unit of our model, which we will
call a ‘city’, is formed by a number of individuals undergoing well-
mixed stochastic infection dynamics whose parameters
are specific to that city and may present seasonal variation. The
number of individuals that interact in this way may comprise
commuters from another city, as well as the residents of that city.
Disease persistence is measured over sets of stochastic simulations
of the model. We find that it depends in a nonintuitive way both on
the level of seasonality and on the magnitude of the flow of
commuters, with a pronounced enhancement of persistence
induced by strong heterogeneity at intermediate coupling
strengths. We also find that the epidemic phase lags generated
by city heterogeneity have no significant effect on disease
persistence.

For the unforced case, an analytic description of the incidence
fluctuations based on van Kampen’s expansion was shown to give
good quantitative results for moderate system sizes (Rozhnova
et al., 2011, 2012). Using this approximation, summarized in the
Supplementary Material (SM), it can be seen that this increase in
persistence is instead related with the stability properties of the
attractor that describes the steady state of the system in the large
population limit.

2. Methods

2.1. Model

In this section, we briefly present the metapopulation
susceptible-infectious-recovered (SIR) stochastic model intro-
duced in Rozhnova et al. (2011, 2012) to describe several
interacting cities, which are population patches where interactions
between individuals are taken to be well mixed.

The SIR model consists of three classes of individuals:
susceptibles, infected and recovered. We denote their number
among the residents of city k by Sk, Ik, Rk, respectively. These
numbers change due to birth, death, infection and recovery, which
in the stochastic version of the model are taken as stochastic events
with certain rates. As usual when working with time scales for
which there are no major demographic changes, we assume that
the number of individuals that reside in city k, Nk, is fixed, so that Sk

and Ik together completely determine the state of city k. The birth/
death rate m is taken to be constant, and infected individuals
recover also at a constant rate g. When a given disease spreads in a
city, the rate of infection is proportional to the number of
encounters between susceptibles and infected that take place in
that city, which in turn, assuming that in the city the population is

well mixed, is proportional to the product of the number of
susceptibles and the number of infected in that city. Now these
numbers should take into account the flow of commuters from and
to that city. In the simplest version of the model, we will assume
that the coupling between cities 1 and 2 may be described by a
single parameter, f, which is the fraction of the number of residents
of each class of city 1 (respectively, 2) that are present in city 2
(respectively, 1) at any given time. The parameter f must be
interpreted as the overall fraction of time that an individual from
one city spends in the other city, averaged over all types of stays
with their typical frequencies and durations. In general, f should be
taken class and city dependent (see SM), but we will explore here
only the simplest case.

The usual SIR rate of infection then becomes, for susceptible
residents of city 1 while in city 1,

b1ð1 � f ÞS1 ð1 � f ÞI1 þ fI2½ �
M1

;

where b1 is a parameter that reflects the urban characteristics of
city 1 through the rate of encounters they elicit, and
M1 = (1 � f)N1 + fN2 is the number of individuals present in city
1 at any given time. The rate of infection of susceptible residents of
city 1 while in city 2 will be given by

b2 fS1 ð1 � f ÞI2 þ fI1½ �
M2

;

with M2 = (1 � f)N2 + fN1. Similar expressions hold for the rates of
infections taking place in city 2.

Our mechanistic model thus leads us to represent the
interaction between population patches as a weighted distribution
of their respective forces of infection. Along with other metapop-
ulation models based on a description of the underlying mobility
patterns (Keeling and Rohani, 2002; Keeling et al., 2010), it extends
the traditional phenomenological modelling of interacting popu-
lation patches by means of a single coupling parameter (Lloyd and
May, 1996), with the important difference that the parameters bk

are allowed to differ from patch to patch, so that spatial
heterogeneity does not come from ‘patchiness’ of the population
only.

The parameter bk may be time dependent to represent seasonal
variability of social intercourse, or of other ingredients such as for
instance weather conditions that influence the rate of infectious
contacts. We will consider a time dependence of the form bkðtÞ ¼
b0

kð1 þ ecos2ptÞ; where t is the time measured in years and e
represents the amplitude of seasonal forcing. More realistic forcing
terms that include a representation of school term calendars are
commonly found in the literature on childhood infectious diseases
(e.g. Keeling and Grenfell (2002)), but we expect the overall picture
revealed by varying b0

k and e to be largely independent of the
particular form of the periodic forcing.

With these assumptions, the stochastic process is governed by
the master equation for the time evolution of Pn(t), the probability
distribution for finding the system in state n at time t (van Kampen,
1981):

dPnðtÞ
dt

¼
X

n0 6¼ n

X

a

Taðnjn0ÞPn0 ðtÞ � Taðn0jnÞPnðtÞ½ �; (1)

where n denotes the state of the system given by the numbers of
infected and susceptibles in each city and Ta(njn0), are the (possibly
time dependent) transition rates from the state n0 to the state n
that result from the birth–death, recovery and infection processes.
These rates are given explicitly in the SM.
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