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1. Introduction

The task of estimating basins of attraction is common and
important in the analysis of dynamic systems that describe electric
power systems, and many tools have been developed for this
purpose (Alberto, 2006; Chiang et al., 1988; Genesio et al., 1985).
In mathematical biology, the determination of the basin of
attraction of a locally asymptotically stable (LAS) equilibrium
point is also an important problem (Gatto and Rinaldi, 1977). In
1973, in his seminal paper about resilience (Holling, 1973), Holling
raised the issue of studying in more detail, from the resilience point
of view, biological systems presenting multistability. While the
stability view emphasizes the equilibrium, the maintenance of a
predictable world, and the harvesting of nature’s excess produc-
tion with as little fluctuation as possible, the resilience view
emphasizes basins of attraction and the need for persistence,

where extinction results from the interaction of random events
with those deterministic forces that define the shape, size, and
characteristics of the basin of attraction.

Global results on bistability are important because of the
biological meaning of equilibrium points. If, an equilibrium point
represents the extinction of a population that should be preserved,
it is thus desirable that the initial conditions are not in its basin of
attraction. One can study control strategies on system parameters
so that this basin of attraction decreases, therefore increasing the
chances that an initial condition does not lead to extinction of the
population.

Several works have dealt with this issue from a biological
standpoint (Holling, 1973; May, 1977; Scheffer et al., 2001; Walker
et al., 2004; Folke et al., 2004), but as far as we know, there has
been no global analysis and comprehensive description of the
bistability regime and the influence of parameters on size and
shape of the basins of attraction in population dynamics models.
From the mathematical point of view, the most common approach
has been through the construction of Lyapunov functions that in
general are difficult to devise and do not provide the estimation of
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A B S T R A C T

In this paper we revisit the classic Lotka–Volterra model of competition between two populations and

present some new results on the regime of bistability presented by this model. Initially, we review the

results on the global stability analysis of the system and present a new global energy function. Then, we

extend the model analysis in the case of strong competition, when the system has two asymptotically

stable equilibria. The influence of parameters on the size and shape of the basins of attraction of these

equilibria was characterized. The results show that the higher the rate of interspecific competition of a

population, the greater the basin of attraction of the stable equilibrium that corresponds to the

predominance of the same. In addition, the relative birth rate of population influences the curvature of

the boundary between the basins of attraction which is the stable manifold of a saddle point. The

influence analysis of this parameter reveals an interesting relation. Which population has more chances

to survive depends on the context in which the initial conditions take place. In the case where

populations begin with a large number of individuals, the one with a smaller birth rate will survive; in

the case where populations begin with few individuals, the one with a greater birth rate will survive. We

showed this result analytically by using the Picard method to approximate invariant manifolds and to

obtain the expression for the curvature of the stability boundary. Finally, the analysis of the joint

influence of competition and reproduction on the thresholds for initial conditions was made and the

biological implications were discussed. We conclude that in terms of strategy for survival of a

population, it is more efficient to adjust its reproductive rate than to improve its ability to withdraw

resources from the environment.
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the entire basin of attraction (Gatto and Rinaldi, 1977; Genesio et
al., 1985; Goh, 1978).

In this work we perform a comprehensive description of the
regime of bistability presented by the classical model of competition
between two populations (Murray, 2000), which is a modification of
the well-known Lotka–Volterra predator–prey model:
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This is a classical model, frequently presented in the beginning of
the study of population dynamics, and has been a basis model for
various other more complex phenomena of biological invasions
(Fassoni and Martins, 2014). In the strong interspecific competition
regime, this system presents the interesting dynamic phenomenon
of bistability. The two equilibrium points corresponding to the
survival of only one of the populations are LAS, and the phase space is
divided into two basins of attraction. However, this phenomenon of
bistability is treated only in a general way, and it is said only that the
trajectories beginning above the separatrix between the basins of
attraction lead to the extinction of the first population, and that the
trajectories beginning below the separatrix lead to extinction of the
other population (Murray, 2000).

The main objective of this work is to answer the question of
what the biological implication of the different configurations of
size and shape of the basins of attraction is, and to study how these
properties are governed by parameters. It is expected that, for
example, the greater the competitiveness of a population, the
greater the basin of attraction of the point corresponding to its
survival and the extinction of the other is. On the other hand, what
is expected with respect to the reproduction rate of each
population? Does a population that reproduces faster have more
chances of survival? Together with numerical and analytical
results and the combination of tools of differential geometry with
qualitative theory of differential equations, we answer this
question and extend the global analysis of this classic model.
We showed that the rates of reproduction of the species, despite
their not having any influence on the linear stability of equilibria,
do have an influence on the curvature of the entire separatrix
between the basins of attraction. Therefore, these rates play a
crucial role in the shape of the basins. This role translates into an
interesting biological mechanism that reveals the chance of
survival of a population is not always increasing with the rate
of reproduction of the population. The results show that this
relation depends heavily on the context from which the initial
conditions are taken.

The paper is organized as follows. In Section 2, we revisit the
model, describing the linear stability analysis of equilibrium
points; also, we discuss some general results on invariant
manifolds and basins of attraction of LAS equilibrium points that
allow us to characterize each basin of attraction. In Section 3,
results on the influence of parameters on basins are presented and
biological implications of the results are discussed. By using the
Picard method to approximate invariant manifolds, a relation
between the rates of reproduction of the populations and the
curvature of stability boundary is found. The proofs of analytical
results of Section 3 are in Appendix A. Finally, in Section 4 some
conclusions are drawn.

2. Revisiting the model – local and global stability analysis

Along this paper, we call N the native population and I the
invader population. System (1) assumes that each population
presents a Verhulst growth and that populations compete for
limited resources available in the environment. All parameters are

positive; rN and rI represent the birth rate of the native and invader
populations, respectively; KN and KI represent the carrying capacity
of these populations; a21 represents the competitive pressure
made by the invader population on the native population, and a12

is analogous. System (1) can be reduced to a dimensionless form by
considering N ¼ N=KN , I ¼ I=KI and t ¼ rNt. Omitting the bars, the
dimensionless form of (1) is

dN

dt
¼ Nð1 � N � aIÞ

dI

dt
¼ dIð1 � I � bNÞ;
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where N and I now represent the density of the populations with
respect to their carrying capacity. The dimensionless parameters
are a = a21(KI/KN), b = a12(KN/KI) and d = (rI/rN). a and b represent
the competitive pressures made by each population and d = (rI/rN)
is the ratio between the reproduction rates of I and N; note that
d > 1 implies that I reproduces faster than N, and d < 1 implies that
N reproduces faster.

System (2) has the trivial equilibrium point P0 = (0, 0), which is a
source, since its eigenvalues are 1 and d. In consequence, both
populations will never be led to extinction simultaneously.
Further, system (2) also has the equilibrium points

P1 ¼ ð1; 0Þ and P2 ¼ ð0; 1Þ;

which represent the extinction of the invader population and the
extinction of the native population, respectively. The eigenvalues
of the Jacobian matrix in P1 are �1 and d(1 � b), while the
eigenvalues of the Jacobian matrix in P2 are �d and 1 � a.
Therefore, we conclude that if a population competes strongly, it
can eliminate the other population. Since in this work we are
interested in analyzing only the hyperbolic equilibrium points,
from now on we consider a 6¼ 1 and b 6¼ 1.

If a, b < 1 or a, b > 1, there is another equilibrium point,

P3 ¼
a � 1

ab � 1
;
b � 1

ab � 1

� �
;

which represents the coexistence of both populations. As to the
eigenvalues of J(P3), it is possible to show (see Murray, 2000) that
they have a real negative part if a < 1 and b < 1, and that they are
real and have opposite signs if a > 1 and b > 1. Thus, if both
populations compete weakly, coexistence may occur. If both
compete strongly, coexistence is not possible. And if one of them
competes strongly and the other is a weak competitor, the strong
one eventually will eliminate the weak.

These results lead to the well known principle of competitive

exclusion, a fairly general principle which is observed to hold true
in nature. Note that the parameter d plays no role in the stability
analysis.

If a > 1 and b > 1, system (2) has two LAS equilibrium points,
P1 = (1, 0) and P2 = (0, 1). The outcomes will depend on the initial
conditions: there are some that lead to P1 and others that lead to P2.
Results above are only local and reveal nothing about this global
behavior of the system, i.e., the division of the phase space in two
regions with different asymptotic behavior of the solutions. Thus, a
global study in this respect is necessary. For this purpose, we
discuss some general results on invariant manifolds and basins of
attraction of LAS points. For more information see Alberto (2006)
and Chiang et al. (1988).

Let f : V ! Rn be a C1 vector field, where V � Rn is an open
subset, and consider the nonlinear system x0 = f(x). We say that a
hyperbolic equilibrium point x* of f is a type k equilibrium point if
the matrix J(x*) = Df(x*) has exactly k eigenvalues with positive
real parts. The Stable Manifold Theorem (Coddington and Levinson,
1972; Perko, 2001) ensures that in a neighborhood of a type k

equilibrium point x*, there is a stable manifold S � V of dimension
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