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1. Introduction

Recently there is much current interest in understand biological
invasions, a world-wide phenomena which represents a major
threat for ecosystems functioning and biodiversity conservation,
water availability, attractiveness of natural areas, and agriculture
(Rejmánek, 1989; Shigesada and Kawasaki, 1997; Dean, 1998;
Chow, 1999). Preventing the spreading of invasive species and/or
predicting their patterns of spreading emerge as imperative tasks
in an ecologically sustainable world. In turn, from the mathemati-
cal viewpoint, patterns of biological invasion are interesting
examples of spontaneous symmetry breaking in complex systems.
In a homogeneous environment (Petrovskii and Shigesada, 2001)
invasion frequently generates regular (smooth) stationary travel-
ling population waves, but more complicated regimes in which
the travelling fronts become transient or oscillatory before the
formation of spatial patterns can be observed in heterogeneous
environment or under the influence of other species (Shigesada
et al., 1986; Sherratt et al., 1995).

The leading theory for plant invasion is the escape of invader
species from the pathogens and herbivores that hold them
constrained in their original habitat, freeing them to focus their
full potential on resource competition (Crawley, 1996). Thus, it is
tacitly assumed that plant communities are ‘‘individualistic’’,
composed primarily of individuals exhibiting similar adaptations
to explore the resources of a given physical environment. However,
instead of being passively shaped by fluctuations in the resources
they require, plant communities can emerge from direct chemical,
biological and physical root–root and root–microbe interactions
occurring within the plant rhizospheres (Bever et al., 2010; Bais
et al., 2004). The race of plants and microbes for adapt to the
chemicals synthesized by their neighbors may drive species
coexistence and community composition. Furthermore, some
exotic invasive plants may use competitive mechanisms to disrupt
inherent, coevolved interactions among long-associated native
species constituting the communities they invade (Callaway and
Aschehoug, 2000; Bais et al., 2003). One such mechanism is
allelopathy, i.e., the suppression of germination or growth of
neighboring plants by the release of toxic secondary chemical
compounds. If an invasive species releases a toxic compound and
the individuals comprising a given natural community lacks
resistance to it, the result may be disruption of the existing
plant community. Therefore, community and invasion ecology are
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A B S T R A C T

Exotic plants threaten the biodiversity of natural habitats and the integrity of agricultural systems

throughout the World. Therefore, understanding, predicting and controlling plant invasions became

issues of great practical importance. In the present paper, a model for plant invasion based on

allelopathic suppression is proposed and studied through analytical methods and numerical integration.

Employing linear stability analysis the conditions for plant coexistence as well as one species extinction

were determined for the spatially homogeneous system. These conditions demonstrate the advantage

conferred to the alien plant by its phytotoxin. It was shown that the system exhibits bistability between

two distinct fixed points, either associated to species coexistence or to the extinction of one species.

Numerical simulation is also included to support such results. Further, the invasion spreading starting

from a single, spatially localized initial focus was investigated by numerical integration of the model’s

equations. As obtained for the spatially homogeneous system, at strong interspecific competition the

outcome is the extinction of one plant species. In contrast, at low interspecific competition, the rule is the

coexistence between the invader and native plants. So, under weak competition alien species can invade,

but genetic diversity can be sustained.
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naturally interconnected because both the persistence of a species
in a community or its invasion success abroad its native habitat
primarily depends on its ability to increase from low density
(Morton and Law, 1997; Shea and Chesson, 2002). Hence,
understanding the dynamics of two plant species interacting
through allelopathic suppression emerges as a main issue in
theoretical ecology.

In the literature, the problem of chemical competition between
algae (Fergola et al., 2007) and bacterial (Iwasa et al., 1998) species
or strains was rather intensively investigated and modeled
mathematically. Nonetheless, the plant–plant interaction dynam-
ics mediated by chemical compounds was much less theoretically
considered (Dubey et al., 2010; Souza et al., 2007).

In this paper we propose a mathematical model to investigate
the dynamics of two competing plant species in which one of them
is an invader and produces a phytotoxin affecting the other.
Further, the role of allelopathy in the asymmetry of the
competition process is discussed. The paper is organized as
follows. In Section 2, the model based on partial differential
equations is introduced. In Section 3, a linear stability analysis of its
spatially homogeneous, stationary solutions is performed. In
Section 4, the resulting dynamical scenarios, supported by the
numerical integration of the associated ordinary differential
equations, and the correspondent phase portraits are reported. A
hallmark of such spatially homogeneous system is the bistability
between the extinction of one species and the coexistence of both
plants. In Section 5, the non-homogeneous spatio-temporal
solutions of the model are investigated numerically. Finally, in
Section 6 some conclusions are drawn.

2. The model for allelopathic invasion

In order to describe the population dynamics of two competing
plant species in which one of them is an invader and produces a
phytotoxin affecting the other, the following reaction-diffusion
system was proposed:

@N

@t
¼ mN 1 � N þ a1I

KN

� �
� NFðPÞ þ ~r � ðDNðPÞ~rNÞ

@I

@t
¼ dI 1 � I þ a2N

KI

� �
þ DIr2I

@P

@t
¼ nI � gPN � tP þ DPr2P:

(1)

Here N stands for the native plant, I for the invasive species, and P

for its phytotoxin. Also, m is the reproduction rate of the native
plant and KN its carrying support. Analogously, d is the reproduc-
tion rate and KI the carrying support of the invasive plant. A
classical interspecific competition for the environmental resources
is assumed for the plants. The parameters a1 and a2 are the
competition coefficients which measure the extent to which each
species presses upon the resources used by the other. The factor n is
the rate of phytotoxin exudation from the roots of the invasive
plants, while t is its natural degradation rate. The term �gPN

represents phytotoxin consume by the native species with an
absorption rate gP which depends on the toxin’s level in a linear
way. The term �NF(P) represents native plant decrease as they
uptake the phytotoxin P. A Holling type I functional response with
a threshold for phytotoxin effects and saturation of the allelopathic
suppression is assumed:

FðPÞ ¼
0; if P � u

b
P � u

j þ ðP � uÞ; otherwise

8<
: (2)

This functional response was chosen in order to simplify the
mathematical analysis. The parameters b and j control the

phytotoxin’s efficiency in poisons native plants, i.e., the slope
b/j of the response at the threshold concentration u. Finally, the
diffusion terms model plant spreading in space through stochastic
seed dispersal and germination, as well as the spread of the
phytotoxin in the soil. For simplicity, the diffusion coefficients DP

and DI are considered to be constant, uniform and DI < DP. In turn,
since the phytotoxin decreases the chance of native plant seed
germination, the diffusion coefficient DN is assumed to be a
decreasing function of the phytotoxin concentration above its
threshold. Specifically,

DNðPÞ ¼
D0; if P � u

D0

1 þ hðP � uÞ; otherwise

8<
: (3)

where D0 is the constant, uniform diffusion coefficient of the native
plant in the absence of the invasive species and h a conversion
factor having the units of inverse of concentration, respectively. For
simplicity, D0 = DI is used. All parameters are positive real
numbers.

The carrying capacities KN and KI, the inverse of the native
plants growth rate m�1 and the poisoning threshold u represent
characteristic population densities, timescale and phytotoxin
concentration, respectively, Thus, it is convenient to introduce
the dimensionless variables N ’ = N/KN, P ’ = P/u, I ’ = I/KI, t ’ = mt,
and ~x’ ¼ ~x=D, in which D is a typical length scale (e.g., the
rizosphere radius), in order to transform the model equations (1)
into the dimensionless system

@N’

@t’
¼ N’ð1 � N’ � a1I’Þ � N’FðP’Þ þ ~r’ � ðDN

~r’N’Þ

@I’

@t’
¼ dI’ð1 � I’ � a2N’Þ þ DIr’2I’

@P’

@t’
¼ nI’ � gP’N’ � tP’ þ DPr’2P’

(4)

where a1 ¼ a1KI=KN , n ¼ nKI=m, g ¼ gKN=m, t ¼ t=m, d ¼ d=m,
a2 ¼ a2KN=KI , DP ¼ DP=mD2, DI ¼ DI=mD2. The re-scaled re-
sponse function F and diffusion coefficient DN are given by

FðP’Þ ¼
0; if P’ � 1

b
P’ � 1

j þ ðP’ � 1Þ
; if P’ > 1

8<
: (5)

and

DNðP’Þ ¼
D0; if P’ � 1

D0

1 þ hðP’ � 1Þ; if P’ > 1

8<
: (6)

respectively. In these expressions b ¼ bu=m, j ¼ j=m,
D0 ¼ D0=ðmD2Þ, and h ¼ hu. Henceforth, we omit the’s for clarity.

3. Linear stability of the spatially uniform stationary solutions

In this section, we analyze the model equations (4) when spatial
fluctuations and correlations are neglected. In this case, the system
(4) is reduced to the following ODEs:

dN

dt
¼ Nð1 � N � a1IÞ � NFðPÞ

dI

dt
¼ dIð1 � I � a2NÞ

dP

dt
¼ nI � gNP � tP

(7)

Clearly, Eq. (7) has a trivial fixed point ~x
�
0� ðN�0; I�0; P�0Þ ¼ ð0; 0; 0Þ

whose linear stability is that of a saddle point (eigenvalues l1 = 1,
l2 = d, and l3 = � t). In consequence, both plant species will never
be lead to extinction simultaneously. Further, the system (7) has
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