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1. Introduction

The traditional predator–prey model can be expressed by a bi-
dimensional system of equations (or vector field) of the following
form:

Xn :

dx

dt
¼ xf ðxÞ � ygðxÞ

dy

dt
¼ eygðxÞ � my

8>><>>: (1)

with n ¼ ðe; mÞ 2 R2
þ, and where x(t) and y(t) represent the

populations, at time t, of prey and predator respectively.
The parameter e represents the predator efficiency rate and m
the predator death rate. The function f(x) represents the average
prey rate of growth in the absence of predator, and the function
g(x) is known as functional response when in the prey equation and
numerical response when in the predator equation.

In this paper, to the best of our knowledge, we present a new
theoretical predator–prey mathematical model considering ratio-
dependent functional response and double Allee effect on the
growth function of the prey. We analyze a Gause type predator–prey
model which is described by an autonomous bi-dimensional system
of differential equations (1) considering the following aspects: (a)

the prey population is affected by Allee effect, and (b) the functional
response is ratio-dependent (Arditi and Ginzburg, 1989). That is, we
present a model where the average rate of growth of the prey is
affected by the Allee effect by introducing an Allee term into the
function f(x) and we incorporate the concept of ratio-dependence
into the functional response function g(x).

The objective of this study is to describe the dynamics of the
model establishing a bifurcation analysis of relevant parameters
and regions of stability.

The modified model with Allee effect on the prey equation
provides an interesting dynamics, since it presents up to five
equilibrium points, a separatrix curve, a Hopf bifurcation, and a
Bogdanov–Takens bifurcation. We analyze stability of the model in
the framework of biological control.

The rest of this Section 1 describes the concepts of Allee effect
and ratio-dependent functional response used in the proposed
model. Section 2 contains the description of the model, the main
results are presented in Section 3, and a discussion in Section 4.

1.1. The Allee effect

The positive relationship between the population density and
the reproduction and survival of individuals is known as Allee effect

(Courchamp et al., 1999; Stephens and Sutherland, 1999; Stephens
et al., 1999) or negative competition effect (Wang et al., 2011) in
population dynamics, and as depensation (Clark, 1990; Liermann
and Hilborn, 2001) in fisheries sciences. That is, an Allee effect is
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observed on the population growth rate if an increase in the per
capita growth rate occurs over certain ranges of population density
(Courchamp et al., 1999), and it can affect population persistence
(Courchamp et al., 1999; Stephens and Sutherland, 1999).

Two main types of Allee effects are well known, depending how
strong the per prey capita growth rate is depleted at low
population size; (a) the strong Allee effect (Wang et al., 2011) or
critical depensation (Clark, 1990), which is characterized by the
existence of a critical threshold below which the population
experiences extinction, and (b) weak Allee effect (Wang et al., 2011)
or pure depensation (Clark, 1990) which is known by not having a
threshold that must be surpassed by a population in order to grow.
Fig. 1(b) illustrates both types of Allee effects.

A wide range of biological phenomena are invoked to produce
the Allee effect dynamics, such as reduced antipredator vigilance,
social thermoregulation, genetic drift, mating difficulty, social
thermoregulation, reduced antipredator defense, and deficient
feeding to low densities (Courchamp et al., 1999); however several
other causes may generate this phenomenon (Berec et al., 2007;
Courchamp et al., 2008).

Recent ecological research suggests the possibility that two or
more Allee effects can generate mechanisms acting simultaneously
on a single population (Table 2 in Berec et al., 2007), specially in
renewable resources (Gascoigne and Lipcius, 2004). The combined
influence of some of these phenomena have been named as
multiple Allee effect (Berec et al., 2007).

In this work, we present a model considering the function
proposed in Berec et al. (2007), describing double Allee effects. The
formula proposed in Berec et al. (2007) is introduced into the
equation of prey population and we assume that different causes
might lead to an Allee effect; some of them are linked to
reproduction and others to survival (Gascoigne and Lipcius, 2004).

When the Allee effect is incorporated into predator–prey
models, richer and more interesting dynamics of the systems are
obtained (Flores et al., 2007; Sen et al., 2012), producing new
results on the interaction of both species.

The prey growth function with Allee effect formula we consider
in this study is the following;

dx

dt
¼ rx 1 � x

K

� �
1 �m þ n

x þ n

� �
: (2)

It was proposed in Boukal and Berec (2002) and has been
incorporated in predator–prey models (Boukal et al., 2007;
González-Olivares et al., 2011) and in a bioeconomic model
(Flores et al., 2007).

Eq. (2) can be expressed as

dx

dt
¼ rx

x þ n
1 � x

K

� �
ðx � mÞ: (3)

In the factor r(x) = rx/(x + n), the parameter n indicates the
population size necessary to reach r/2, the half rate saturation.
The parameter n affects the overall shape of the per-capita growth
curve of the prey, as n increases, the curve becomes increasingly
‘‘flatter’’ and reaches lower maximum values (Boukal et al., 2007)
as it is illustrated in Fig. 1(a).

In this form of the Allee effect, n can be defined as a constant

Allee effect. The bigger n is, the stronger the Allee effect will be, and
the slower the per capita growth rate of the predator population,
especially when x is small (Zhou et al., 2005), i.e., the per capita
growth rate of the prey population is reduced from rx to rx/(x + n).

1.2. Ratio-dependent functional response

Recently models studying predator–prey interaction where
predation involves searching process are considering favorably the
concept of ratio-dependence (Abrams, 1994; Arditi and Ginzburg,
1989, 2012). Solid arguments have been presented to justify that in
some cases (Slobodkin, 1992), especially when predators have to
search (share and/or compete) for food, a more suitable predator–
prey model should be based on the ratio-dependent theory (Arditi
and Ginzburg, 1989, 2012; Haque, 2009; Lev et al., 1992). The
ratio-dependent concept, a particular case of predator dependence,
can be simply stated that the per capita predator growth rate is a
function of the ratio of the prey population size to predator
population size. Fig. 2 illustrates the significant difference
between prey-dependent and ratio-dependent functional
responses as the predator density decreases approaching zero.

Since the ratio-dependent functional response is assumed to
depend on the single variable x/y, system (1) takes the form

Xn :

dx

dt
¼ xf ðxÞ � yg

x

y

� �
dy

dt
¼ eyg

x

y

� �
� my:

8>>><>>>: (4)

As in Arditi and Ginzburg (2012) the ratio-dependent functional
response we are considering is the Michaelis–Menten (or Holling
type II) hyperbolic type functional response,

gðxÞ ¼ qx

x þ a
; ) g

x

y

� �
¼ qx

x þ ay
(5)

where q > 0 is the maximum consumption rate of predator and
a > 0 is known as the half saturation parameter.

These ratio-dependent models are of particular mathematical
interest because the functional response is undefined at the origin
(Arditi and Ginzburg, 1989; Berezovskaya et al., 2001; Jost et al.,
1999). However, this equilibrium point (the origin) has a
significative importance on the dynamics, as it has been shown
in different research papers (Berezovskaya et al., 2001; Kuang and
Beretta, 1998; Sen et al., 2012). The origin is a non-hyperbolic node
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Fig. 1. The growth function of the prey in the absence of predator. (a) The effect of n (n = 2 and 4) in the demographic Allee effect. (b) The weak Allee effect (m < 0 and m = 0)

and strong Allee effect (m > 0).
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