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1. Introduction

The time evolution of many eco-epidemiological systems is
modeled by differential equations, which can have periodic
solutions. An attracting periodic solution, in this context, means
that the sizes of the different groups composing the modeled
system regularly oscillate in a permanent regime (e.g. Anderson
and May, 1991; Malchow et al., 2008; Murray, 2003). This dynamic
behavior can be a consequence of considering delays and/or
periodic coefficients in the differential equations (e.g. Hethcote
and van den Driessche, 1995; Olinky et al., 2008; Schwartz, 1992).
However, self-sustained oscillations can also be found in constant-
parameter models without any periodic input (e.g. Mukherjee,
2010; Pada Das et al., 2011; Sharp and Pastor, 2011).

An important issue in epidemiology is to understand why the
prevalence of some contagious diseases oscillates in a periodic
manner with time, while others chronically persist at an

approximately constant level (e.g. Anderson and May, 1991;
Bauch, 2008; Grassly and Fraser, 2006; Hethcote and Levin, 1989).
Are the oscillations in prevalence caused by variations in
demographic features of the host population (for instance,
variations in the age structure, population size or in its spatial
aggregation)? Are these oscillations stimulated by seasonal
fluctuations in the disease propagation (for instance, fluctuations
in the infection rate due to cyclic weather changes)? Are they an
effect of attempts to control pathogen propagation (via, for
instance, the implementation of regular vaccination campaigns)?
Are they an outcome of immunity loss (that is, the prevalence
oscillates because the corresponding infection does not confer
permanent immunity after recovery)? Are they induced by
antigenic drift due to mutations (which certainly contributes for
the recurrence of influenza epidemics)? Questions like these have
been addressed in theoretical works using cellular automata (e.g.
Boccara et al., 1994; Johansen, 1996; Schimit and Monteiro, 2011;
Slimi et al., 2009; Sun et al., 2010) and differential equations (e.g.
Breban et al., 2009; Casagrandi et al., 2006; Castellazzo et al., 2012;
Magal and Ruan, 2010; Roberts and Tobias, 2000; Zhang et al.,
2012).

In this work, we propose an epidemic model based on
probabilistic cellular automaton (PCA) to investigate the emer-
gence of oscillations in the prevalence of contagious diseases. In
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A B S T R A C T

A relevant issue related to eco-epidemiological studies concerns the demographic mechanisms that can

lead to self-sustained oscillations in the composition of a host population subject to infection. In

particular, why does the prevalence of some contagious diseases oscillate over time? Here, we address

this question by using susceptible-infective-recovered-empty models including migration of infective

foreigners and variable population size. These models are described in terms of ordinary differential

equations (ODE) and also in terms of probabilistic cellular automaton (PCA), in which each cell is

connected to others either by a regular lattice or by a random graph favoring local contacts. Each cell in

the PCA model can be either empty or occupied by a single individual. The amount of neighbors per cell

affects the value of the basic reproduction number R0, which is, in fact, a bifurcation parameter. We show

that, by varying the amount of neighbors per cell (and consequently R0), the number of infective

individuals can start to exhibit periodic behavior, which corresponds to a Hopf bifurcation in the ODE

model. This bifurcation gives rise to a self-sustained oscillation and it can only occur if the immigration

rate of infective individuals is above a critical value. We also investigate how the sum of new infections,

within the considered time window, depends on the number of neighbors per cell.
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this model, the population size is not constant, the contact network
is either regular or random, and the immigration of infective
individuals is taken into account. Migration can be a host behavior
crucial for the spreading of infectious diseases (e.g. Brauer and van
den Driessche, 2001; Niro et al., 2012; Wallace and Fitch, 2008)
and is the key process in our study.

In epidemic models with immigration, it is usually supposed
that the immigrant flow is constant (e.g. Brauer and van den
Driessche, 2001; Enatsu et al., 2012; Guo and Li, 2012; Li et al.,
2006); therefore, the disease is never eliminated from the host
population, which is not realistic. Here, we suppose that the
density of infective individuals outside the spatial region
represented by the PCA network is the same as in this region.
Thus, the immigration rate is taken as proportional to the quantity
of infective individuals found in the PCA network. Thanks to this
(strong) assumption, the disease-free steady state exists, which is a
solution that can be observed in the real world (e.g. Bartlett, 1957;
Monteiro et al., 2006a).

By analyzing the mean-field approximation written in terms of
ordinary differential equations (ODE), we derive conditions for a
Hopf bifurcation to occur; that is, the birth of a limit cycle (an
isolated closed trajectory corresponding to a periodic solution) in
the state space of the ODE model. We also investigated how the
number of neighbors per cell influences the total of new infections
in a chosen time window.

This manuscript about oscillatory behavior in the spreading of a
transmissible disease is organized as follows. In Section 2, the
model based on PCA is described and results obtained from
numerical simulations are presented. In Section 3, the results are
analytically explained from the equivalent ODE model. In
Section 4, the conclusions are discussed.

2. PCA model and numerical results

Models formulated in terms of PCA have been proposed for
studying the propagation of contagious diseases (e.g. Ahmed et
al., 1998; Doran and Laffan, 2005; Ferreri and Venturino, 2013;
Fuentes and Kuperman, 1999; Sirakoulis et al., 2000; Yakowitz et
al., 1990). In our model, individuals live in a square matrix
formed by n � n = N cells with periodic boundary conditions.
Each cell represents either an empty space (E) or an individual
that can be in one of three states: susceptible (S), infective (I) or
recovered (R). The time evolution of this SIRE (susceptible-
infective-recovered-empty)  model is ruled by the following set
of probabilities of state transitions. At each time step, there is a
probability PS ! IðvÞ ¼ 1 � e�kv of a S-individual being infected, in
which v is the number of connections with distinct infective
neighbors and k is a parameter expressing the pathogen
infectivity (Schimit and Monteiro, 2009, 2012). Each I-individual
has probability PI!R per time step of becoming cured, probability
PI!E per time step of dying due to the infection, and probability
PE!I per time step of recruiting an infectious foreigner for
occupying an empty cell (as noted in Section 1). At each time
step, a R-individual may die with probability PR!E and a S-
individual may be born in an empty cell with probability PE!S.
When individuals die at time step t, the corresponding cells
become empty at t + 1. Note that the number of individuals can
vary, but this number plus the amount of empty cells remains
constant and equal to N = n2. The states of all cells are
simultaneously updated throughout a simulation.

Here, a regular lattice and a random graph are employed to
represent the connections among the cells. In both topologies, the
m neighbors of a cell pertain to the square matrix of size 2r + 1
centered on such a cell, in which r is the neighborhood radius. In
the regular lattice, the m neighbors are all the (2r + 1)2 � 1 cells
contained in this matrix. For instance, the case r = 1 including all 8

surrounding cells is known as Moore neighborhood of unit radius
(e.g. Wolfram, 1994). In the random graph, from each cell, p

connections start and arrive at other cells pertaining to its
neighborhood matrix (two or more connections between the same
two cells are allowed). The cells with radius equal to i compose the
layer i, with i = 1, 2, . . ., r, and the probability qi of creating a link
between a cell and any cell pertaining to the layer i of its
neighborhood matrix is given by qi = 2(r + 1 � i)/[r(r + 1)]. Observe
that qi diminishes with i. For instance, for r = 2, then q1 = 2/3 and
q2 = 1/3; that is, the probability of connecting a cell to any of the 8
cells forming the layer i = 1 is 66.7%, and to any of the 16 cells
forming the layer i = 2 is 33.3%. For (2r + 1)2 � 1 � p (that is, the
number of available cells to establish a link is much greater than
the number of links starting from each cell), the number m of
neighbors of each cell is approximately 2p. This network (Monteiro
et al., 2006b; Schimit and Monteiro, 2009) is mainly locally
connected like graphs called ‘‘small-worlds’’ (Watts and Strogatz,
1998), because the average clustering coefficient hCi is ‘‘high’’ (that
is, hCi � m/N) and the average shortest path length hli is ‘‘small’’
(that is, hli < ln(N)).

As examples, Figs. 1 and 2 exhibit the time evolutions of the
normalized concentrations of S, I and R-individuals in the regular
lattice for k = 0.25, PI!R = 0.5, PI!E = 0.1, PE!I = 0.8, PR!E = 0.005,
PE!S = 0.05 and n = 500 (therefore, N = 2.5 � 105), from the initial
condition S(0)/N = 0.4975, I(0)/N = 0.0025 and R(0)/N = 0 (conse-
quently, E(0)/N = 0.5; thus, at t = 0, half of the cells are unoccupied).
In Fig. 1, m = 80 (r = 4) and the concentrations tend to a periodic
oscillation; in Fig. 2, m = 528 (r = 11) and a stationary solution is
attained. In a time window of 5000 time steps, the total of new
infections (transitions S ! I) for m = 80 is 3.04 � 106; for m = 528,
2.36 � 106.

Table 1 presents the asymptotic behaviors in simulations with
the regular network for r = 1, 2, . . ., 11 (recall that m = (2r + 1)2 � 1).
Limit cycle is found for 48 � m � 224; for m � 24, a disease-free
steady state is reached; for m � 288, an endemic steady state is
observed when t! 1. Table 2 lists the behaviors in the random
network with r = 50 and m/2 ’ p = 1, 2, 5, 10, 20, . . ., 80. In this
network, the attractor is a limit cycle for 4 � m � 60. These
numerical results can be analytically explained by analyzing the
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Fig. 1. Time evolutions of S(t)/N (green), I(t)/N (red) and R(t)/N (blue) obtained

from a PCA simulation in the regular graph (E(t)/N is not shown; however, E(t)/

N = 1 � S(t)/N � I(t)/N � R(t)/N). The parameter values are k = 0.25, PI!R = 0.5,

PI!E = 0.1, PE!I = 0.8, PR!E = 0.005, PE!S = 0.05, n = 500 and m = 80 (that is, Moore

neighborhood with r = 4). The initial condition is S(0)/N = 0.4975, I(0)/N = 0.0025,

R(0)/N = 0 and E(0)/N = 0.5. The system exhibits self-sustained oscillation in

permanent regime.
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