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1. Introduction

Exploitative competition between two or more species is an
indirect interaction between competitors who seek to obtain
resources that are limited (Park, 1962). Strong competitive ability
may result in a competitor outcompeting a weaker one, drastically
depleting the population of the latter, eventually leading to its local
extinction. This situation is known as competitive exclusion
(Gause, 1932).

The effects of competition can depend by many external factors,
such as seasonality (Namba, 1984), stochasticity (Chesson and
Warner, 1981), habitat fragmentation (Huxel and Hastings, 1998)
or spatial heterogeneity (Tilman, 1994), which can promote
coexistence in situations which would otherwise lead to exclusion.
Different species may show different sensitivities to these factors.
When the external effect on a pair of competitors is such that the
stronger is more negatively affected than the weaker, the
competitive pressure on the latter is milder and we say that
competitive release occurs (Kareiva, 1982). This may result in
benefits for the weak competitor, whose population can conse-
quently be augmented, avoiding competitive exclusion. Competi-
tive release is the result of a balance: it will be incremental for the

population of the weak competitor if the gain from smaller
competitive pressure is larger than the damage due to the external
effects that affect both competitors.

Release of competition should be explained by the effects of
some causative factor on the system. Here we argue that area
effects – that is, the fact that a habitat is finite – are one such factor.
Moreover, we invoke only diffusion through the borders of a patch
and the intrinsic growth of the population on that same patch as
the mechanisms mediating area effects and leading to competitive
release.

Let us recall the essence of area effects when a single theoretical
population inhabits a patch of habitat, surrounded by a matrix,
supposed to be completely inhospitable (Skellam, 1951). Two
tendencies are in action: the intrinsic growth of the population and
the diffusion – the population flux – through the boundaries. The
first of these is proportional to the area of the fragment, the second
to the perimeter. Therefore, the first dominates large areas and
implies persistence of the population, the second is more
important in small fragments and leads to local extinction. A
critical area exists, separating both regimes. The theory can be
formulated mathematically through the use of the Fisher–
Kolmogorov equations on a finite domain (Ludwig et al., 1978;
Kenkre and Kuperman, 2003). The critical area turns out to de p2D/
r, where D is the diffusion constant associated to the species and r is
its intrinsic per capita growth rate. The expression for the critical
area makes it patent that its existence stems from the counter-
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A B S T R A C T

A common situation observed in fragmented habitats is that species densities diminish within smaller

fragments. Some species, however, do show an opposite tendency. We argue that release of competition

between a strong competitor and a weak one is a plausible explanation for these different sensitivities to

area reduction. We provide a quantitative model for competitive release caused by habitat limitation,

solely based on the balance of diffusion and growth of the species. We show that in small habitat patches

the stronger competitor has its density diminished, as opposite to the weaker competitor who, in a

certain area range, has its density increased. We examine field data from an ecological experiment in

Amazonia (BDFFP) which measured densities of two Amazonian rodents who showed opposite

sensitivity to area reduction and we argue that our model explains the observations accurately. This

implies that (i) area reduction is a strong factor determining densities of species in patches of habitat,

regardless of considerations on degradation or edge effects and (ii) that species interactions have to be

taken into account to explain sensitivity to size of the patches in ecological communities. We also discuss

alternative explanations, such as predator release and effects due to imperfect isolation. Moreover, we

stress the conceptual and mathematical simplicity of our model, which, nevertheless explains a

phenomenon not yet well understood.
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acting effects of diffusion and growth. The factor D/r has units of
area and defines the square of the typical diffusive length, LD, and
represents an intrinsic, species-specific, spatial scale. The case of
the matrix being not completely inhospitable, theory has been
developed indicating that a small remaining population may
inhabit the fragment (Artiles et al., 2008). Ecological experiments
(Ferraz et al., 2007), testing the sensibility to area effects in
understorey birds in the Amazonian forest provide one of the best
indications in favor of this basic theory.

The above result is valid if species do not interact, or the
interaction has no strong effects on an ecological scale. The
conclusions do not hold, however, if interactions are important.
Here we consider the competition between two species in a limited
habitat and examine the status of the principle of competitive
release in this case. We will do so by considering a competitive
Lotka–Volterra equation with diffusion and with the restriction that
the population is zero outside a square of area L2. In Cantrell et al.
(1998) and Fagan et al. (1999) (see also Leung (1980)) this same
problem has been considered and coexistence has been shown to be
possible by means of a mutual invasibility condition. Here we take a
step further and look for the values of the equilibrium densities,
more specifically, the maximum of the equilibrium densities inside
the habitat patch. These values are important because they can be
connected with actual field observations. Besides, knowing how
equilibrium densities depend on the patch’s area gives a more
quantitative understanding of coexistence, and allows to establish
ranges of area values where coexistence is more likely to be
observed. A similar problem has also been considered in Mimura
et al. (1991), but with different boundary conditions and involving
considerations on the shape of the domain. Other authors (Britton,
1989; Holmes et al., 1994), have also touched upon the interplay of
diffusion and interactions, focusing however on other aspects than
ours. Here we provide a simple model that shows a qualitative result
that can be extended to more complex contexts, and at the same
time, offering quantitative comparison to data, namely two rodent
species in fragments of the Amazonian forest.

In order to assess equilibrium densities we cannot rely on a
linear analysis as these densities depend on carrying capacities and
interaction terms. Here we numerically integrate the differential
equations on a long enough time scale and provide plots of the
dependence of maximum densities on area values.

We proceed as follows: in Section 2 we define the model and
obtain a pattern of competitive release as consequence of area
limitation; in Section 3 we compare the model results with
previously published results on rodents in fragments of the
Amazonian forest; in Section 4 we discuss more general models;
and in Section 5 we set out to discuss the results in a broader context.

2. The model

Let us begin with a general case of two species, labeled 1 and 2,
whose dynamics obeys the competitive Lotka–Volterra model with
diffusion (Pacala and Roughgarden, 1982), which reads in non-
dimensional variables (see Appendix A for details):

@u1

@t
¼ r2u1 þ u1 1 � u1 � g1u2½ � (1)

@u2

@t
¼ kr2u2 þ au2 1 � u2 � g2u1½ � (2)

Here, u1 and u2 are the populations of species 1 and 2 measured in
terms of their carrying capacities; time is measured in terms of the
inverse of the intrinsic growth rate of species 1 and space is
measured in terms of the typical diffusive length of species 1. The
constant a is the ratio of the intrinsic growth rate of species 2 to the
intrinsic growth rate of species 1. Finally, k is the ratio of the
diffusivities of both species (D2/D1) and g1 and g2 are phenome-
nological competition coefficients. Henceforth we will take a and k
to be equal to one, so that the results that we obtain are
representative of effects of area on competition. This is a kind of
neutrality with respect to growth and diffusion rates.

As mentioned above, this system of equations has been subject
of previous studies, notably in Cantrell et al. (1998). There, the
possibility of competitive reversal and coexistence has been
established by a linear analysis. Exclusion and coexistence patterns
depend on the parameters that appear in the equation, as well as
on the domain where the equation is being integrated. As our focus
in this work is the effect of area reduction, we will take fixed values
for the parameters in a first moment and study the sensibility of
population levels to changes in area.

We have numerically integrated the above equations on a
square domain with the additional supposition that populations go
to zero on the border of the habitat (Dirichlet boundary
conditions). It follows from the theory of partial differential
equations that we cannot impose a zero population flux on the
boundary in the same problem. Indeed the flux is non-zero, and
represents flow of individuals into the matrix. Further, we took two
very different values of g1 and g2. With g1 = 0.5 and g2 = 1.8 we
would have competitive exclusion of species 2 in favor of species 1
if the habitat were unbounded. The limited area of the habitat
modifies densities in the habitat. In Fig. 1 we plot the spatial (local)
maximum of the densities u1 and u2 in terms of the area of the
fragment. As can be seen, both species respond to area reduction in
a very different way. Although both go to zero for very small areas,
species 2 shows a coexistence region with species 1. This means
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Fig. 1. The spatial maximum values of u1 (left) and u2 (right) in the equilibrium situation are plotted against the area of the domain. We used g1 = 0.5 and g2 = 1.8. For large

areas, species 1 tends to outcompete species 2. For very small areas, both species go to zero, but in an intermediate range, coexistence is possible.
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