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1. Introduction

The kinetics of oscillating biological systems has been
extensively studied and described by a variety of mathematical
models (Alvarez-Ramirez et al., 2009; Blomberg, 2006; Novak and
Tyson, 2008; Petrovskii and Malchow, 2001; Petrovskii et al., 2004;
Rai et al., 2007; Zhang et al., 2002). The large majority of them are
population balance models, continuous or discrete, whose output
is a periodic function; regular, complicated or chaotic (Baurmann
and Feudel, 2004; Hosseini, 2006; Vandermeer, 2006). Almost
invariably, the investigated or simulated process is assumed to
take place in an ‘‘isothermal’’ environment, in which case the
observed changes are in the quantities involved but not in the
coefficients of the differential equations themselves. The same can
be said on the many models that describe the oscillation patterns
of macro-organisms or microbial populations. The oscillations that
they describe are primarily in the population’s size, not in the
coefficients of the differential or difference equations that regulate
their relationship with the environment or other populations. It
would therefore be interesting to investigate what might happen
when the parameters, which govern the oscillations amplitude and
frequency, either drift monotonically or fluctuate themselves. A
good example would be the effect of changing temperature on the

progress of an oscillatory biological process or the size of aquatic or
terrestrial microbial or insect populations.

The effect of temperature fluctuations on biological systems has
been primarily studied as the oscillations’ cause (e.g., Rinaldi et al.,
1993; Ruoff and Rensing, 2004; Upadhyay et al., 1998). Our starting
point is that the system in question is known to be oscillatory even
under isothermal conditions and that the temperature only affects
the oscillations’ amplitude and frequency. The mechanisms that
produce and regulate the oscillations, can be complex and in many
cases not fully known in detail. Hence we will resort to a
phenomenological model in the search of potential patterns. The
same can be said on monotonic growth too. With few exceptions,
information concerning the exact state of the individual elements
or members of the populations is either incomplete or lacking
altogether. Similarly, in many monotonic decay processes or
mortality, the exact chain of events at the fundamental level is also
rarely fully known and hence population models are almost
universally used to describe and predict them. The above should
not be construed as a suggestion to abandon the mechanistic
approach to kinetics. On the contrary, we fully subscribe to the
notion that effective control of a biological system rather than
merely its description will always require an insight into the
underlying mechanisms and their dynamics.

In this work, we will only address hypothetical abstract systems
that can be described by a continuous deterministic model. The
goal is to demonstrate that exposing an oscillating biological
system to temperature fluctuations can by itself produce
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A B S T R A C T

A phenomenological model of non-isothermal evolution of naturally oscillating biological systems was

constructed on the assumption that the momentary growth or decline rate is the isothermal rate at the

momentary temperature, at the time that corresponds to the system’s momentary state. Simulations

using this model show that monotonic temperature rise or fall only affects the oscillations amplitude and

frequency. In contrast, fluctuating temperature can induce irregular periodicity, aperiodic outbursts of

varying magnitude and duration and/or extinction, depending on the temperature fluctuations’

complexity, and frequency relative to that of the biological system’s own. This suggests that coupling of

the regular oscillations of a population or biological process, with temperature or other fluctuations in its

environment could be a cause of irregular and apparently chaotic patterns, at least in principle. For lack

of suitable data, the described model is yet to be validated. However, it is a testable model that could be

confirmed experimentally by future research.
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oscillatory patterns that cannot be intuitively deduced from the
isothermal ones.

2. Theoretical background

Most of the standard models of population growth, notably the
logistic (Verhulst) model and its various modifications, were
originally developed for an isothermal habitat, and the same can be
said on mortality or survival kinetics. However, the isothermal
growth and mortality models can both be adapted for a dynamic
environment if one assumes that the system’s momentary rise or
fall rate is the isothermal rate at the momentary temperature, at
the time, t*, which corresponds to the momentary state of the
system (Peleg, 2003, 2006). The validity of this assumption has
been demonstrated with published experimental results on
microbial growth (e.g., Corradini and Peleg, 2005), microbial
mortality (e.g., Corradini and Peleg, 2004a; Pardey et al., 2005) and
chemical degradation (e.g., Corradini and Peleg, 2006, 2004b).
Validation came from the resulting dynamic models’ ability to
predict correctly the growth, mortality or chemical degradation
curves under non-isothermal conditions, including under fluctu-
ating temperature, from experimental isothermal data. The
concept was further strengthened by the models’ ability to predict
correctly non-isothermal microbial growth and mortality curves
from other non-isothermal data too (e.g., Smith-Simpson et al.,
2007; Peleg and Normand, 2004). All these demonstrations,
however, were in systems where under isothermal conditions
the population size or process’s product rose or fell monotonically.
The concept has also been applied to peaked processes governed by
competing mechanisms of growth-mortality or synthesis-degra-
dation (e.g., Peleg et al., 2009). In that case, however, experimental
validation of the models will have to wait until suitable published
data become available. Finding suitable joint isothermal and non-
isothermal data on peaking biological processes and populations
has been proven extremely difficult, and the same can be said
about oscillating biological systems. But, since the objective of the
present work is only to investigate potential theoretical implica-

tions of the hypothesis concerning the momentary rate of change
under dynamic conditions, we will proceed without the backing of
an experimental database.

2.1. Simple oscillating systems

Consider an ideal simple oscillatory system that under
isothermal conditions follows the equation:

YðtÞ ¼ Y0f1þ aðTÞsin½vðTÞt þ d�g; aðTÞ<1 (1)

or

log YðtÞ ¼ log Y0 þ logf1þ aðTÞsin½vðTÞt þ d�g; aðTÞ<1 (2)

where Y(t) is an organismic population size or density, a resource
concentration, etc., a(T) and v(T) are its oscillations’ temperature
dependent amplitude and frequency, respectively, and d a phase
angle (0 � d � 1).

We assume that in the pertinent temperature range, a(T) and
v(T) are monotonic functions of temperature. For simplicity we
will also assume that both a(T) and v(T) rise with temperature in
this range, although this is not essential for what follows. Examples
of hypothetical a(T) and v(T) relationships and the corresponding
isothermal Y(t) curves produced with Eq. (1) as a model are shown
in Fig. 1.

As in peaked processes (Peleg et al., 2009), formulating the rate
equation in terms of dY(t)/dt can result in negative solutions that
have no physical meaning, a problem that does not exist when
dlog Y(t)/dt is used instead.

The momentary isothermal logarithmic rate of a system
described by Eqs. (1) and (2) is:

dlog YðtÞ
dt

¼ aðTÞvðTÞcos½dþvðTÞt��
1þ aðTÞsin½dþvðTÞt�� (3)

where t* is the time that corresponds to the system’s momentary
state, Y(t).

Under dynamic conditions, the momentary value of t*(t) at any
given momentary temperature, T(t), is the inverse of Eq. (1) at that

Fig. 1. A hypothetical example of how temperature can affect a biological system’s regular oscillations amplitude and frequency (top), and corresponding oscillation patterns

at three fixed temperatures are shown at the bottom. They were produced with Eq. (1) as a model with d = 0.
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