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A generalized framework for representing the stochastic interactions between an ecological community
and the environment is introduced. By modelling an ecosystem by a coupled system of stochastic
differential equations, one can capture many of the ecosystem’s salient features. For example, the
framework permits each species within the community to have multiple developmental phases as well
as for the environment to consist of several, interdependent environmental factors. This enables
statistical inferences to be made on many pertinent ecological issues such as biodiversity and the
allometric relationship between species abundance and biomass.

The framework gives accurate predictions of the population number cumulants over time whilst
avoiding the negative transition rates that often beset traditional moment closure approaches. This
framework is used to analyze a predator-prey model subject to random environmental fluctuations. The
prey is assumed to have both an adult and larval phase with the adults vulnerable to predation. The
results obtained for this model are in keeping with conventional ecological theory—the abundances of r-
selected species are more erratic than those of K-selected species. In addition, the r-selected species
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abundances are more correlated to the environment than the K-selected species abundances.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ecological communities are governed by a complex web of
interacting ecological mechanisms. These mechanisms can be
classified into interspecific species interactions, intraspecific
species interactions, species interactions with the environment
and interactions between the environmental components. Eco-
logical mechanisms have a direct bearing on wildlife management
since commonly used conservation measures such as species
richness, species viability and biomass are determined by the
dynamics of the ecological communities. Hence, a modelling
framework that is able to capture some of the complexities of real
world systems should enable a deeper understanding of the
aforementioned measures. This is vital for effective management
of ecological systems.

Much work has focused on understanding the dynamics of
ecological communities. This includes investigations into the
assembly of ecological communities (see Luh and Pimm, 1993)
where the factors that promote species coexistence are explored.
Other studies are based on the ecosystem’s food web (see Jonsson
et al., 2010). This is useful as not only does a food web succinctly
characterize the flow of nutrients between species, but it is also
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very helpful in understanding the allometric relationships that
exist between species abundance, body size and biomass (see
Cohen et al., 2003). Yet other works seek to explicitly model the
spatial movement of species (see Austin, 2002; Morozov et al.,
2008). Spatial models can provide insights into the mechanisms
that promote species diversity (see Chave et al., 2002) and species
persistence (see Keeling, 2000).

This paper presents an alternative approach to community
modelling. The focus is on predicting the evolution of the species
abundance cumulants over time. By treating the species abun-
dance as a continuous random variable, Varughese and Fatti (2008)
developed a diffusion approximation to the extended Kolmogorov
equations of Marion et al. (2000). In this paper, this diffusion
approximation is further extended to a coupled set of diffusion
equations that can account for several interacting populations
whilst still allowing for environmental stochasticity. However, the
resulting system of equations is not only analytically intractable,
but numerical solution of the system is also computationally
demanding.

By applying moment closure procedures, the moment dynam-
ics of a population can be predicted in a computationally tractable
manner (see Whittle, 1957). Traditional moment closure methods
assume a distributional form for the population numbers (see
Whittle, 1957; Keeling, 2000). Often, distributional assumptions
can cause the cumulants to have imaginary or negative steady-
states (see Singh and Hespanha, 2006). This paper avoids making
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distributional assumptions. Instead, all cumulants above a certain
order are assumed to be zero. For a single population, cumulant
truncation yields a unique non-trivial positive real steady-state
solution to the cumulants (see Singh and Hespanha, 2006).

The ability to predict the evolution of the population cumulants
allows statistical inferences to be made on many topical ecological
issues probed by the aforementioned approaches—for example,
biodiversity measures and the relationship between species
abundance and body mass. Furthermore, the model parameters
can be statistically estimated (see De Valpine and Hastings, 2002).
The parameter estimates and their confidence intervals can be
used to test whether various hypothesized mechanisms are
affecting the system as well as to infer the relative strengths of
the ecological mechanisms that shape the community.

The coupled diffusion process, together with some underlying
theory, is presented in Section 2. This is followed in Section 3 by a
study of a hypothetical community consisting of two species
where one of the species is assumed to have a larval and an adult
development phase. In the adult phase, the species is susceptible to
predation by the competing species. Both species are affected by
the environment. The predictions under the coupled diffusion
framework are shown to compare favourably with simulations. In
Section 4, the results of the paper are discussed with conclusions
being drawn in Section 5.

2. Modelling an ecological system as a set of coupled diffusion
processes

Consider a single environmental factor ¢ that affects the
population number N for a single species. Marion et al. (2000)
assumed that only one of five events could possibly occur over an
interval (t, t + At):

e a birth with probability B(N, ¢)At,

e a death with probability D(N, ¢)At,

e the environmental condition improves by e with probability
Xe(P),

o the environmental condition deteriorates by —e with probability

X_e(P),

o the system remains unchanged over the interval.

Marion et al. (2000) showed that for such a system, the
probability distribution function, py 4(t) evolves according to the
following equation:
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where B(¢, t) and (¢, t) are the instantaneous mean and variance
of ¢, respectively.

Png(t) denotes the joint probability distribution of the
population number (which is a discrete variable) and the
environmental factor (which is assumed to be continuous). As
such, pyg(t) is an unusual joint distribution—its marginal
distributions are discrete and continuous, respectively. The
environmental probabilities are related to the instantaneous mean
and variances by Marion et al. (2000):
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Varughese and Fatti (2008) derived a continuous approxima-
tion py 4(t) to Eq. (1):
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Here, the population number is also treated as a continuous
variable resulting in a standard joint probability distribution
v e(t). Acursory examination of the form of Eq. (3) reveals that the
population number N is now modelled as an diffusion process with
instantaneous mean B(N, ¢) — D(N, ¢) and instantaneous variance
B(N, ¢)+D(N, ¢). Varughese (2009) demonstrated that the
diffusion approximation’s predictions of the cumulant evolutions
over time are very close to the predictions obtained from Eq. (1).
Hence little is lost by using a diffusion approximation to represent
the population numbers yet the diffusion approximation both
avoids technical difficulties encountered by the extended Kolmo-
gorov equations (such as negative transition rates—see Varughese
and Fatti, 2008) as well as being less time consuming to implement
for higher order cumulant studies.

Consider an ecological community consisting of n interacting
populations as well as p interdependent environmental factors that
affect (but are not affected) by the n populations. Let N; denote the
population number for the ith population and ¢; denote the ith
environmental factor. f N=(Ny, Ny, ..., Ny) and @ = (¢4, ¢, ..., ¢p)
then we canrepresent the birth and death rates for the ith population
as BN, ®) and D(N, ®), respectively. In addition, let o P, t) and
Bi{ P, t) denote the instantaneous mean and instantaneous variance
respectively for the ith environmental factor.

The evolution of the ecological community’s probability
distribution can then be approximated by the following equation:
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It is assumed that the instantaneous covariances between the
n + p processes are zero. This does not imply that the processes are
uncorrelated (see for example Fig. 3). Since the birth and death rates,
as well as the instantaneous means and variances, are functions of
the system (N, ®@), Eq. (4) is capable of mimicking almost all of the
correlation behaviour—for example, correlations due to inter-
specific interactions—that can be exhibited by the more general
model (with non-zero instantaneous covariances) whilst having far
fewer parameters. Unfortunately, Eq. (4) is analytically intractable.

Though the populations and the environment are both
represented by diffusion processes, the two are modelled in
fundamentally different ways: the modelling of the environmental
processes focuses on the processes’ instantaneous mean and
variance whilst with the species the focus is on the birth and death
transition rates.

Like the probability distribution, the moment-generating
function (MGF) characterizes the behaviour of the ecological
system. Consider the random vector X(t) = (X;(t), Xx(¢t), ..., Xs(t))
whose joint transition probabilities are given by:
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