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1. Introduction

The last two decades ecologists and epidemiologists have
become increasingly interested in the structuring effects of
parasites and pathogens within food webs and multiple-species
communities. The merger of the two disciplines, ecology that
studies population dynamics and epidemiology that studies the
effects of a disease on a population, is known as eco-epidemiology.
Anderson and May (1986) were the first to combine the two fields
and considered ecological and epidemiological issues simulta-
neously. This has led to the insight that infectious diseases can
have regulating effects not only on their host population, but also
on other species their host interacts with (Anderson and May,
1986; Dobson and Hudson, 1986; Grenfell and Dobson, 1995; Sait
et al., 2000; Hudson et al., 2001, 2006; Holt et al., 2003; Lafferty

et al., 2006, 2008; Naji et al., 2010). Predator–prey models where
the prey species is infected by some disease have been studied by
Anderson and May (1986), Hadeler and Freedman (1989),
Venturino (1994), Chattopadhyay and Arino (1999), Xiao and
Chen (2001), Hethcote et al. (2004) and Greenhalgh and Haque
(2006) and where the predator species is infected instead, by
Venturino (2002), Haque and Venturino (2006, 2007), Hilker and
Schmitz (2008), Stiefs et al. (2009) and Oliveira and Hilker (2010).
The study of the effects on the dynamics of a predator–prey system
with an infected predator has a great importance, when the
question of predator control is concerned.

In the present study we consider the RM predator–prey model
(Rosenzweig and MacArthur, 1963) as a reference model, where
the prey population is limited by the carrying capacity. We focus
on the effects of an infectious disease of the predator on the
possible occurrence of complex dynamics like chaos. In Das et al.
(2009) the effects of a disease in the prey population was
considered, here only the predator species is infected by the
disease and therefore in the model the infected predator
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A B S T R A C T

We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey

system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI)

model is split into a susceptible and an unrecoverable infected population, while all newborn are

susceptible. The incidence rate at which susceptible become infectious is described by a Holling type II

functional response giving saturation when the number of susceptibles increases. From a modeling context

this three-dimensional model is in the limit case similar to the well-known 3D Rosenzweig–MacArthur

(RM) model, with the infected population replacing the top-predator. The RM model is known for the

Shil’nikov bifurcation, which is associated to the chaotic behaviour. The effects of the disease are considered

to be changes in the parameters that represent relative predation efficiency and mortality rates. A

combination of analysis, numerical integration and numerical continuation techniques are used to perform

a bifurcation analysis of the model. The positive stationary solution of the disease free, two-dimensional

predator–prey system is either a stable equilibrium or a stable limit cycle where the transition occurs at the

Hopf bifurcation. For a biologically applicable parameter set, it is found that when the infected individuals

feed less fast or less effective than the susceptibles there is bi-stability where the two-dimensional disease

free state co-exists with a stable equilibrium for the three-dimensional PSI system. The introduction of a

disease can also cause chaos when the infected predator individuals are ecologically not functioning (not

feeding and no offspring). However, under small parameter changes first the Shil’nikov bifurcation, and

hence the chaotic behaviour, disappears followed by the Hopf bifurcation that marks the existence of limit

cycles of the three-dimensional PSI system. As such, an infectious disease has a strongly stabilizing effect on

the predator–prey system, similar to the existence of weak links in food webs.
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subpopulation is considered explicitly as a third dynamical
equation. Newborn predator individuals are born uninfected:
hence there is no vertical infection. Individuals that have become
infected remain infected until death. The disease can work via
different modes of actions on demographic parameters, and here
we primarily study the effects on the consumption efficiency of the
infected predators, and secondary the mortality rates of the
susceptible and infected predators.

From ecological modeling it is well known, that the up-scaling
from two to three variables possibly allows for the occurrence of
chaotic behaviour in the model. In fact, the three-dimensional
variant of the RM model, where a top predator population that
feeds on the predator population is included, was the first
ecological model in which chaos was shown to occur (Hogeweg
and Hesper, 1978; Hastings and Powell, 1991; Klebanoff and
Hastings, 1994a,b; McCann and Yodzis, 1995; Kuznetsov and
Rinaldi, 1996; De Feo and Rinaldi, 1998; Kuznetsov et al., 2001;
Deng and Hines, 2002). Since infected individuals can only be
‘‘born’’ through infection of a susceptible predator individuals, the
infected subpopulation could be perceived as a top predator that
feeds on the predator population. Indeed, in a limit case where
infection does not change the ecological functioning, the PSI model
collapses to the 3D-RM model, displaying all the complex
dynamical characteristics. These dynamics have been studied
extensively (Hastings and Powell, 1991; De Feo and Rinaldi, 1998;
Kuznetsov et al., 2001; Deng and Hines, 2002) and recently in van
Voorn et al. (2010), in which an overview of the known global
bifurcations and their consequences is given.

Also in other, epidemiological systems chaos has been shown to
occur. Schaffer and Kot (1985a) have been especially persuasive in
their view that chaos may be a much more important phenomenon
than ecologists had earlier believed. A number of simple
epidemiological systems with seasonality in contact rates
unequivocally demonstrate chaos (Schaffer and Kot, 1985a). In
Schaffer and Kot (1985b) and Olsen et al. (1988), it is shown that
measles in New York, Baltimore and Denmark may be a specific
example of this behaviour. Grenfell and Dobson (1995) investigat-
ed the effects of locally chaotic dynamics on global persistence in
standard epidemiological models. And recently in Chatterjee et al.
(2006) and Upadhyay et al. (2007) it is observed that chaotic
dynamics occur in eco-epidemiological models.

In this paper we consider the complex dynamical behaviour in
the PSI model, and under which conditions non-equilibrium
dynamics disappears and the infected system possesses a stable
equilibrium. We analysed the resulting PSI model using bifurcation
theory (Guckenheimer and Holmes, 1985; Wiggins, 1988, 1990;
Kuznetsov, 2004), where the asymptotic behaviour of the system
(equilibria, periodic cycles, chaos) is evaluated under parameter
variation for qualitative changes. A qualitative change in the
asymptotic behaviour is then referred to as a bifurcation point. For
examples of ecological applications in general see Bazykin (1998)
and Kooi (2003), and for specifically the RM model in Kuznetsov
and Rinaldi (1996), Boer et al. (2001), Kuznetsov et al. (2001),
Doedel et al. (2008, 2009) and van Voorn et al. (2010) and
references therein. The mortality rates of the susceptible and
infected subpopulations are taken as bifurcation parameters while
the consumption efficiency of the infected predator population is
varied.

Expressions for the basic reproduction numbers, R0, are related
to the occurrence of a transcritical bifurcation of an equilibrium or
limit cycle. These TC bifurcations form the boundaries of positive
existence regions in the parameter space. The two-dimensional
disease-free PS-system has a positive equilibrium below a critical
value of the mortality rate of the predator at a transcritical
bifurcation. This equilibrium becomes unstable below a second
critical value, a Hopf bifurcation, where the system shows

oscillatory behaviour. The results show that chaos can occur in a
predator–prey system with disease in the predator population: a
cascade of period doublings is found to be a route that leads to chaos.
The organizing centre for chaos in the food chain model is found to be
the homoclinic saddle point equilibrium Shil’nikov bifurcation. The
chaos disappears when infected predator individuals consume the
prey and contribute by reproduction of susceptible individuals to the
growth of the predator population. When the consumption
efficiency of the infected population is above a certain value the
PSI system is unconditionally stable, also where the disease-free PS
system possesses oscillatory behaviour. This reveals a strong
stabilizing effect of an infectious disease of the predator.

2. Model formulation

The classical predator–prey 2D-RM model (Rosenzweig and
MacArthur, 1963) reads

dX

dT
¼ RX 1� X

K

� �
� AXY

Bþ X
; (1a)

dY

dT
¼ CAXY

Bþ X
� DY; (1b)

where X and Y are the prey and predator population sizes. The prey
population grows logistically with carrying capacity K and intrinsic
growth rate R. The predator consumes the prey according to the
Holling type-II functional response (Holling, 1959). Here, B

represents the half saturation constant, A is the maximum
ingestion rate, C is the conversion factor and D is the death rate
of predator population.

The 3D-RM model version includes a top predator population,
and reads

dX

dT
¼ RX 1� X

K

� �
� A1XY

B1 þ X
; (2a)

dY

dT
¼ C1A1XY

B1 þ X
� D1Y � A2YZ

B2 þ X
; (2b)

dZ

dT
¼ C2A2YZ

B2 þ X
� D2Z; (2c)

where Z is the top-predator (see also Das et al. (2009)).
Continuing with the predator–prey model (1) the predator

population consists of two subpopulations. When the size of the
susceptible subpopulation is denoted by P and the infected
subpopulation by Q, then Y = P + Q. We assume that the disease
spreads within the predator population only and that the total
predator population can be split into a susceptible and an infected
part. We further assume that all newborn individuals are
susceptible and uninfected. Individuals that have become infected
remain infected until death.

In the classical epidemiological models the Law of Mass Action
incidence rate per susceptible-infected couple is assumed to
describe the transmission. Here we use the Holling type II function
to describe the infection mechanism.

With the above assumptions, the model (1) takes the following
form:

dX

dT
¼ RX 1� X

K

� �
� AXðP þ bQÞ

B1 þ X
; (3a)

dP

dT
¼ AXðC1P þ C2bQÞ

B1 þ X
� lPQ

B2 þ P
� D1P; (3b)

dQ

dT
¼ lPQ

B2 þ P
� D2Q : (3c)
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