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1. Introduction

Excitability is found in many natural systems. Examples

include chemical reactions, neural systems and cardiovascu-

lar tissues, cf. Lindner et al. (2004) for a review. One important

application in aquatic ecology is the modelling of recurrent

phytoplankton blooms that might be generated through

external excitations as temporary temperature or nutrient

peaks (Truscott and Brindley, 1994; Beltrami, 1996; Freund

et al., 2006) and that might have adverse effects on fisheries

and aquaculture (Cosper et al., 1989; Okaichi, 2004). Biological

control is one of the desirable countermeasures. There is some

evidence that viral infections might accelerate the termina-

tion of phytoplankton blooms (Suttle and Chan, 1993; Bratbak

et al., 1995; Jacquet et al., 2002; Gastrich et al., 2004). However,

there is much less known about marine viruses and their role

in aquatic ecosystems and the species that they infect, than

about plankton patchiness and blooming, for reviews, cf.

Fuhrman (1999) and Suttle (2005). Despite the increasing

number of reports, the role of viral infection in the

phytoplankton population is still far from understood.

Viral infections of phytoplankton cells can be lysogenic or

lytic. The understanding of the importance of lysogeny is just

at the beginning (McDaniel et al., 2002; Ortmann et al., 2002;
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An excitable model of fast phytoplankton and slow zooplankton dynamics is considered for

the case of lysogenic viral infection of the phytoplankton population. The phytoplankton

population is split into a susceptible (S) and an infected (I) part. Both parts grow logistically,

limited by a common carrying capacity. Zooplankton (Z) is grazing on susceptibles and

infected, following a Holling-type III functional response. The local analysis of the S–I–Z

differential equations yields a number of stationary and/or oscillatory regimes and their

combinations. Correspondingly interesting is the behaviour under multiplicative noise,

modelled by stochastic differential equations. The external noise can enhance the survival

of susceptibles and infected, respectively, that would go extinct in a deterministic environ-

ment. In the parameter range of excitability, noise can induce prey–predator oscillations and

coherence resonance (CR). In the spatially extended case, synchronized global oscillations

can be observed for medium noise intensities. Higher values of noise give rise to the

formation of stationary spatial patterns.
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Wilcox and Fuhrman, 1994; Jiang and Paul, 1998). There is

some evidence that many environmentally important pollu-

tants may be inducing agents for natural lysogenic viral

production in the marine environment (Cochran et al., 1998).

Contrary to lytic infections with destruction and without

reproduction of the host cell, lysogenic infections are a

strategy whereby viruses integrate their genome into the

host’s genome. As the host reproduces and duplicates its

genome, the viral genome reproduces, too.

Mathematical models of the dynamics of virally infected

phytoplankton populations are rare as well, the already

classical publication is by Beltrami and Carroll (1994). More

recent work is of Chattopadhyay et al. (2002, 2003). The latter

deals with lytic infections and mass action incidence func-

tions. Hilker and Malchow et al. have observed oscillations and

waves in a phytoplankton–zooplankton system with Holling-

type II (Malchow et al., 2004; Hilker and Malchow, 2006; Hilker

et al., 2006) and III (Malchow et al., 2005) grazing under

lysogenic viral infection and proportionate mixing incidence

function (frequency-dependent transmission) (Nold, 1980;

Hethcote, 2000; McCallum et al., 2001).

In this paper, we continue considering the latter case but

focus on modelling the impact of multiplicative noise

(Spagnolo et al., 2002, 2004; Allen, 2003; Anishchenko et al.,

2003; Valenti et al., 2004, 2006) on the excitable local dynamics,

i.e., noise-induced effects on interacting phytoplankton and

zooplankton with Holling-type III grazing, in the sub-excitable

parameter range in time and space.

2. The mathematical model

The Truscott–Brindley model (1994) for the prey–predator

dynamics of phytoplankton P and zooplankton Z at time t

reads in dimensionless quantities:

e
dP
dt
¼ rPð1� PÞ � a2P2

1þ b2P2
Z; (1)

dZ
dt
¼ a2P2

1þ b2P2
Z�m3Z: (2)

There is logistic growth of the phytoplankton with intrinsic

rate r and Holling-type III grazing with maximum rate a2=b2 as

well as natural mortality of zooplankton with rate m3. The

growth rate r is scaled as the ratio of the current rate rcur and a

fictive long-term mean hri.
Excitability is found for parameter ranges where the

straight predator nullcline intersects the S-shaped prey

nullcline to the left of its minimum at the only stable

stationary solution. Intersections at the minimum or max-

imum of the predator nullcline lead to Hopf bifurcations, i.e.,

one finds limit cycles to the right of the minimum, etc.

The phenomenon of slow–fast predator–prey cycles in this

model has been specified by Fernández et al. (2002). However,

slow–fast cycles or processes with longer and shorter turnover

times are well known in ecosystem dynamics. Prominent

examples are forest–pest interactions with periodic massive

outbreaks of insect pests (Ludwig et al., 1978; Rinaldi and

Muratori, 1992a, b) or cyclic grazing systems with periodic

collapses and recoveries of the vegetation (Noy-Meir, 1975;

Rietkerk, 1998). Other sudden catastrophic regime shifts in

ecosystems with long return times have been reviewed by

Scheffer et al. (2001), Scheffer and Carpenter (2003) and

Rietkerk et al. (2004), cf. also Carpenter and Turner (2000) and

the whole Ecosystems issue including the work by Rinaldi and

Scheffer (2000) on prey–predator food chain models.

The parameter e� 1 even boosts the fast prey dynamics

describing the high sensitivity and much faster response of

the phytoplankton population to environmental changes like

variations of temperature or nutrient supply. An example for

nullclines and trajectories for decreasing e after initial

perturbation of the system is shown in Fig. 1.

For e ¼ 1, the system almost immediately returns to the

stationary state. For e ¼ 0:5, the excitation of the system is

alreadyseen.However, fore ¼ 10�3, thetrajectory isshotparallel

to the abscissa to the temporary maximum of phytoplankton

density at the right branch of stable solutions on the prey

nullcline. Then, it slowly moves to the maximum of the

nullcline, speedily falls back to the left stable branch and slowly

approaches the stationary point again. The corresponding

dynamics of the phytoplankton population can be seen in Fig. 2.

Fig. 1 – Nullclines of the Truscott–Brindley model.

Trajectories are given for e ¼ 1, e ¼ 0:5 and e ¼ 10�3. Other

parameters: r ¼ 1:0, a ¼ 4:0, b ¼ 12:0, m3 ¼ 0:0525.

Fig. 2 – Corresponding phytoplankton dynamics.
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