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1. Introduction

Sudden and significant changes in biotic and abiotic

measures have been identified across a variety of system

types from the distant past to the present (Scheffer et al.,

2001; Burkett et al., 2005). While evidence for such ‘regime

shifts’ is cited in a number of disciplines, the characteriza-

tion and understanding of the phenomenon is not straight-

forward. In ecology, early theoretical work on alternative

stable states (Lewontin, 1969; Holling, 1973; May, 1977) set

the stage for recent theoretical and empirical studies

explaining large changes in observable variables in response

to small changes in conditions in terms of shifts between

system attractors and their basins of attraction brought

about by bifurcations (Scheffer et al., 1993; Carpenter et al.,

1999; Anderies et al., 2002; Scheffer and Carpenter, 2003).

Bifurcations can involve the appearance (or disappearance)

of attractors as well as changes in the boundary between

basins of attraction of existing system attractors (Vanderm-

eer and Yodzis, 1999).

The regime shift concept in marine systems has been more

controversial. The difficulty in identifying and explaining

regime shifts stems from the fact that these are large, open

systems for which the concept of state is not well defined, and

the underlying mechanisms for change are poorly under-

stood (de Young et al., 2004). Some have argued that observed

changes in system variables need not be anything but normal

statistical deviations (Wunsch, 1999; Rudnick and Davis,

2003). There is evidence, however, that deviations in at least

some biotic variables are better explained by low dimen-

sional, deterministic nonlinear processes characteristic of

alternative stable states than simply linear stochastic

processes (Hsieh et al., 2005). The difficulty in studying these

large systems has led to a pragmatic approach to the
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a b s t r a c t

Sudden and significant changes in biotic and abiotic variables have been observed across a

variety of systems. The identification of such regime shifts in time series includes both

model-fitting and statistical approaches. We introduce two methods that use state- or

measurement-space neighborhood statistics to pick out regime shifts. Analysis of simulated

and real data sets shows that these methods can be an effective means of identifying regime

shifts for single variable as well as multivariable time series. In addition, these methods can

be used on systems with non-equilibrium steady states. However, care must be taken in

interpreting results as these methods do respond to changes in time series that are not

consistent with the regime shift concept.
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characterization of regime shifts. On this view a regime shift

is a response to changes in environmental forcing that results

in changes in ecosystem status and function. Most impor-

tantly, this transient response occurs over a short-time scale

relative to the time the ecosystem is in a non-transient status

(de Young et al., 2004).

A variety of tools to explore data for regime shifts or

alternative stable states are available. The emphasis in

ecology on nonlinear dynamics and alternative stable states

has led to the use of model regressions to test for multiple

equilibria in time series data (Carpenter and Pace, 1997; Solow

et al., 2003). In the oceanographic literature the approach has

been to identify points of significant change in the statistics of

the data – mainly changes in the mean – rather than

underlying stable states. Easterling and Peterson (1995)

review these methods and propose their own using linear

regressions with Student’s t-test and multiresponse permu-

tation procedures to test for significance. Lanzante (1996)

proposes a method based on a Wilcoxon–Mann–Whitney type

test for the equality of medians. These methods suffer from

deterioration of the statistics toward the ends of the time

series. Rodionov (2004) proposes a sequential data processing

technique based on Student’s t-test to circumvent this

problem. It compares favorably with the method of Lanzante

(1996).

Hare and Mantua (2000) use principal component analysis

(PCA) to detect regime shifts in multivariable data sets of the

North Pacific, but this approach requires additional methods

to test for significance. The average standard deviates

compositing approach of Ebbesmeyer et al. (1991) requires

a priori specification of a candidate shift. The analysis

demonstrated by Noakes (1986) and the method proposed

by Solow and Beet (2005) use time series models to identify

times at which regime shifts have occurred, but these

approaches assume a single regime shift. Fath et al. (2003)

propose a method using Fisher Information as a summary

statistic, and Mayer et al. (2006) apply it to several data sets.

However, it was developed in the context of cyclical systems

and does not give any guidance as to significance of regime

shifts. See Mantua (2004) for a recent review of these

methods.

Here we describe two methods that identify potential

regime shifts through changes in neighborhood statistics.

Both methods can be applied to multivariable data as well as

to non-equilibrium systems. Furthermore, the nearest

neighbor method gives objective estimates of significance.

These methods contrast with current approaches in that

they are not based on changes in the mean or median, and

do not assume equilibrium dynamics. However, the meth-

ods presented here are not meant to take the place of

detailed modeling, experiments and comparative analyses

(Carpenter, 2001). Rather, they are proposed as a means to

quickly identify shifts in time series that merit further

study.

Throughout we assume that time series involving one or

several variables of interest is available, and that over the

measurement period the system has experienced one or more

shifts in dynamic regime. The problem we address is the

identification of the time point(s) at which likely regime shifts

have occurred.

2. Nearest neighbor method

We have adapted an approach by Kennel (1997) to the

detection of multiple ‘change points’, points in time at which

a change in system parameters has occurred. We have found

the method effective in identifying regime shifts.

Consider a sequence of measurements (data) taken at

uniform intervals in time and indexed by N integers

xð1Þ;xð2Þ;xð3Þ; . . . ;xðNÞ. Assume further that over the time

period for which data have been collected a single regime shift

has occurred. For each point in the data sequence a nearest

neighbor (NN) (in measurement- or state-space) over the

entire time series is found. We then calculate the proportion of

NN pairs that lie on the same side (in time) of a candidate

change point and compare this to the proportion expected

under the null hypothesis of stationarity. When the candidate

change point coincides with the time of a regime shift (see

Fig. 2) we expect the proportion of NN pairs on the same side to

be high relative to the proportion under the null. Instead of

performing statistics on nearest neighbors directly, these are

collected in sets, termed strands, to eliminate correlations. For

each NN pair, made up of a reference point and its nearest

neighbor, the difference in time indices is determined,

DðxÞ ¼ TðxNNÞ � TðxÞ. Here Tð�Þ gives the time index of the

point. Nearest neighbors are found such that jDðxÞj �W, where

W is a characteristic autocorrelation time.

Moving along the time series, every xðiÞ and its nearest

neighbor that share the same D for xði� kÞ, k2 ½1;W�, are

appended to the strand associated with xði� kÞ. Otherwise, a

new strand is started. This corrects for serial correlation (in

which iterates of nearest neighbors remain nearest neigh-

bors). Strands then are collections of pairs of points, a

reference and its nearest neighbor, that are D apart in time.

The reference points of sequential pairs in a given strand are at

most W apart in time. As a final correction, if any two strands

share underlying points, in either the reference or neighbor

part, one strand is randomly deleted until no remaining

strands share any points. The resulting strands represent

nearly independent nearest neighbors and help in dealing

with noise. A correction for oversampling can be introduced by

defining two NN pairs as having the same D when

jDðxðiÞÞ � Dðxð jÞÞj � F, where F (constant) acts to ‘fuzzify’ time.

A statistical test is then applied to the strands. For a

candidate change point (a;1 <a <N) we apply the indicator

function:

IaðxðiÞ;xð jÞÞ ¼
1 if i; j � a or i; j>a
0 otherwise

�
(1)

to the first NN pair in each strand to determine the proportion

of strands (r) whose reference and nearest neighbor are on the

same side of the change point.

Under the hypothesis of stationarity, the time index of a

nearest neighbor can be anywhere in the data set with

uniform probability except in the interval W time steps before

the beginning and W time steps after the end of the reference

portion of a strand. To estimate the proportion (r0) of

reference–neighbor pairs on the same side of the candidate

change point (a) under the null hypothesis, we keep the

reference portion of the first NN pair in each strand as it is and
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