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a  b  s  t  r  a  c  t

Phosphorus  (P)  is  essential  for plant  growth  and  development.  Very  few  studies  have  reported  the  use
of hyperspectral  three-band  vegetation  indices  (TBVIs)  in  foliar  P estimation.  Further,  the  optimal  TBVI
is generally  chosen  from  millions  of  all possible  band  combinations.  This  study  aimed  to investigate
resampling  and  two  wavelength  selection  methods  (genetic  algorithm  (GA)  and  successive  projections
algorithm  (SPA))  in  deriving  TBVIs  for foliar  P estimation  and  further  to  compare  the  performances  of the
newly  developed  TBVIs  and  published  VIs.  A  total  of  137  field-based  canopy  hyperspectral  reflectance
(350–2500  nm)  of Carex  (C. cinerascens)  were  obtained  and  reduced  to  1603  wavelengths  due  to spectral
noises.  Considering  both  the  original  and first  derivative  reflectance  spectra,  their  resampled  wavelengths
and  selected  wavelengths  by GA  and  SPA  were  employed  to derive  TBVIs.  A  total  of  24 selected  TBVI
models  were  calibrated  for foliar  P estimation  with  the  training  dataset,  and  they were independently
validated  with  the  test  dataset.  The  root  mean  square  error  of  validation  (RMSEVal),  determination  coef-
ficient  of  validation  (R2

Val) and  residual  prediction  deviation  (RPD)  values  were  calculated  to  evaluate
the  performance  of  each  model.  The  results  demonstrated  that  5474,  1972  and  1.2  s  in  average  was
taken  in  calculating  all possible  TBVIs  using  resampling,  GA and  SPA,  respectively.  Two  SPA-based  TBVIs,
i.e.  (�760 −  �2387)/(�723 − �2387)  (��, original  reflectance)  and  (�′

729 −  �′
1319 + 2�′

714)/(�′
729 +  �′

1319 −  2�′
714)

(�′
�
,  first  derivative  reflectance),  had  the best model  performances  (R2

Val =  0.680,  RMSEVal =  0.040%,
RPD  = 1.75;  R2

Val = 0.692,  RMSEVal = 0.039%,  RPD  =  1.80)  in  foliar  P estimation  among  the  24  TBVIs.  Com-
pared with  15 published  VIs  (R2

Val < 0.64,  RPD  <  1.64),  the two  SPA-based  TBVIs  exhibited  better  validation
performances.  We  concluded  that  SPA  has  the  great  potential  for  TBVI  derivation  due to  the reduction  of
computation  time,  and  the  use  of  SPA  in TBVI  derivation  is  recommended  for NDVI  derivation  or  other
biochemical  parameter  estimation.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Phosphorus (P) is a key nutrient element for plant growth and
development. In cropland ecosystem, P-deficient crops generally
exhibit weak or stunted growth (Li et al., 2006; Plénet et al., 2000),
thereby decreasing crop yield and economic benefit (Rodríguez
et al., 1999); while in grass ecosystem, foliar P content closely
associates with the distribution and feeding patterns of herbivores
(Bailey et al., 1996; McNaughton, 1988; Mutanga and Kumar, 2007).
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Therefore, the regional spatial monitoring of P content in plant
leaves is crucial for precision agriculture and wildlife conservation.

Hyperspectral remote sensing and imaging spectroscopy tech-
niques have been proven to be promising in capturing the regional
spatial variation of biochemical components in plant leaves, e.g.
chlorophyll, nitrogen (N) and P (Axelsson et al., 2013; Ferwerda
et al., 2005; Malenovsky et al., 2006; Mutanga et al., 2004). This
feasibility is attributed to the relationship between the absorption
of electromagnetic radiation and chemical compositions (Curran,
1989). Despite the fact that N and P play an equally important role in
plant growth and development, much less attention has been paid
to remotely estimation of P compared to that of N (Axelsson et al.,
2013; Mutanga and Kumar, 2007). For green plants, foliar N con-
tent can be successfully estimated with visible and near-infrared
reflectance (VNIR) through its close correlation with optically active
compounds, i.e. chlorophyll and protein (Abdel-Rahman et al.,
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2010; Axelsson et al., 2013; Ferwerda et al., 2005; Mitchell et al.,
2012). A relationship between P and VNIR is theoretically expected,
because P plays an important role in plant photosynthesis and
interacts with organic compounds (e.g. starch, sugar, protein and
chlorophyll) that absorb electromagnetic radiation at fundamental
stretching frequencies in the VNIR domain (Alabbas et al., 1974;
Sanches et al., 2013). However, the low concentration in the foliage
and subtle physical absorption features still pose a challenge for the
accurate estimation of P by VNIR. Given this limitation, there is a
need to develop or improve techniques that can accurately estimate
foliar P content in grass or cropland ecosystems.

Multivariate modeling techniques, such as partial least squares
regression (PLSR) (Bogrekci and Lee, 2005; Sanches et al., 2013),
stepwise multiple linear regression (SMLR) (Mutanga et al., 2005;
Ramoelo et al., 2011), successive projections algorithm coupled
with multiple linear regression (SPA-MLR) (Cui et al., 2013; Wang
et al., 2015), artificial neural network (ANN) (Knox et al., 2011;
Mutanga and Kumar, 2007) and support vector regression (SVR)
(Axelsson et al., 2013; Zhai et al., 2013), have been employed to
extract foliar P content information from hyperspectral reflectance
at leaf, canopy or landscape scale. These techniques bring multiple
wavebands into calibration models, rendering model interpreta-
tion more complicated than hyperspectral vegetation index (VI)
models with only one predictor. Hyperspectral VIs are developed to
enhance their sensitivities to green vegetation signals (Kawamura
et al., 2011) and to minimize the variability caused by external
factors such as soil background, canopy geometry, leaf optical
properties and atmospheric conditions (Darvishzadeh et al., 2009;
Jackson and Huete, 1991; Mutanga and Skidmore, 2004). Hyper-
spectral VIs have been widely used for estimating and mapping
foliar N, water and chlorophyll contents (Abdel-Rahman et al.,
2010; Ferwerda et al., 2005; Li et al., 2015; Malenovsky et al., 2006;
Pacheco-Labrador et al., 2014; Ramoelo et al., 2012). However, very
little experience has been gained regarding foliar P estimation with
hyperspectral VIs (Kawamura et al., 2011; Pimstein et al., 2011).
Hence, it is required to further investigate the relationship between
foliar P content and hyperspectral VIs.

The most common hyperspectral VIs are ratio-based indices
derived from two narrow wavelengths, i.e. simple ratio index (SRI)
and normalized difference vegetation index (NDVI). These VIs are
generally developed and optimized through all possible two-paired
band combinations involving hundreds or thousands of wave-
lengths over 400–2400 nm (Darvishzadeh et al., 2009; Ferwerda
et al., 2005). Recent studies have demonstrated that three-band
VIs (TBVIs) might be better estimators of foliar N and chlorophyll
contents compared with traditional two-band VIs (Li et al., 2015;
Pacheco-Labrador et al., 2014; Tian et al., 2011; Wang et al., 2012).
In general, a total of n wavelengths can generate n × (n − 1) and
n × (n − 1) × (n − 2) combinations of all possible two-band VIs and
TBVIs, respectively. Therefore, the process of selecting an opti-
mal  TBVI is often time-consuming. To overcome this limitation,
some studies turned to employ spectral resampling method with
an interval of 5 nm to reduce time cost (Pacheco-Labrador et al.,
2014), but this method may  still take long time in selecting an opti-
mal  TBVI from millions of all possible combinations. Further, due
to the discard of potential wavelengths related to biochemical con-
centration and the multicollinearity of neighboring wavelengths,
the resampling method may  bring irrelevant and redundant spec-
tral information in TBVI derivation. Hence, there is a need to select
informative wavelengths related to target biochemical component
and reduce time cost for TBVI derivation.

Wavelength selection methods, such as genetic algorithm (GA)
(Broadhurst et al., 1997; Jarvis and Goodacre, 2005) and suc-
cessive projections algorithm (SPA) (Araújo et al., 2001), have
been widely used for informative wavelength extraction (Cui
et al., 2013; Li et al., 2007). Compared with GA, SPA has weaker

performance in the calibration process, whereas SPA is simpler and
time-saving in the process of wavelength selection (Shi et al., 2014).
The selected wavelengths are often combined with multivariate
modeling techniques (e.g. PLSR and MLR) for estimating biochem-
ical concentrations (Cui et al., 2013; Li et al., 2007). However, few
efforts have been made for further TBVI derivation with the selected
wavelengths.

With the canopy hyperspectral reflectance of Carex (C. cineras-
cens) in Poyang Lake, China, this study aimed to (1) investigate the
resampling method and wavelength selection methods (GA and
SPA) in deriving TBVIs for foliar P estimation and (2) compare the
performances of the newly developed TBVIs and some published
VIs.

2. Materials and methods

2.1. Field sampling and canopy reflectance measurement

The study area was  located in Poyang Lake (28◦52′21′′–
29◦06′46′′ N, 116◦10′24′′–116◦23′50′′ E), Jiangxi Province, China. As
the largest freshwater lake in China, Poyang Lake is an impor-
tant wetland in the world. Carex (C. cinerascens) is a wetland grass
species widely distributed in Poyang Lake, and it is the main food
of some over-wintering birds such as swan goose (Anser cygnoides)
and white-fronted goose (A. albifrons albifrons) (Zhang and Lu,
1999).

In order to widen the range of foliar P contents, two filed sur-
veys were carried out in December 2012 (vegetative stage, n = 66)
and April 2013 (heading stage, n = 71), respectively. In each field
survey, nine sites (150 m × 150 m)  were randomly selected within
the large areas of Carex biomes. At each site, four to eight plots
(1 m × 1 m)  were randomly laid out to keep at least 30 m apart
between any two  plots, and the canopy reflectance spectra and
leaf samples were measured and collected as follows: the longi-
tude and latitude coordinates at each plot were first obtained with
a global position system receiver (Garmin Ltd., Lenexa, KS, USA);
before each spectral measurement of canopy, the spectral mea-
surement of a white Spectralon panel was then carried out for
instrument calibration to minimize the effect of changes of solar
irradiance and atmospheric conditions on canopy reflectance; ten
successive spectra (350–2500 nm)  were measured 1 m above the
canopy at nadir position using an ASD FieldSpec® 3 portable spec-
troradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA)
with a field of view of 10◦, and their average value was calculated
as the final spectrum for each sample; finally, for each plot, five
subplots (0.25 m × 0.25 m) in the center and four corners were har-
vested by clipping leaves 5 cm above the ground and pooled, and
one third of the pooled fresh leaves were immediately put into a
labeled sample bag for their chemical analysis in laboratory.

2.2. Chemical analysis

The collected leaf samples were dried at 70 ◦C for 24 h in an
oven, ground with an agate mortar and passed through a 65-
mesh sieve (0.25 mm).  The dried and ground samples were initially
pre-processed by HCLO4–H2SO4 digestion. Following digestion,
the P content (% DM,  dry matter) was  determined using the
Mo–Sb (molybdenum–antimony) colorimetric method (Yuan and
Lavkulich, 1995). To ensure measurement accuracy, certified house
reference materials and reagent blanks were used during chemical
analysis.

2.3. Data pre-processing

Due to the large noises at both spectrum edges (<400 nm
and >2450 nm)  and over the water-dominated spectral regions
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