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a  b  s  t  r  a  c  t

Phytoplankton  phenology  is  increasingly  recognised  as  a key  ecological  indicator  to  characterise  marine
ecosystems.  Existing  methods  to  quantify  phenology  are  often  limited  by gaps  in the  data  record  or  by
differences  between  the  assumed  and  actual  shapes  of  the  seasonal  cycle.  A novel  method  to  estimate
phytoplankton  phenology  from  satellite  chlorophyll-a  data  is presented  here,  allowing  us  to  determine
the  shape  of  the annual  cycle  from  the  data  themselves,  and  to  fill  data  gaps  using  data  from  the  vicinity at
a  larger  spatial  scale.  Up  to  two  chlorophyll-a  peaks  (blooms)  per  annual  cycle  can  be  identified,  and  their
timings  and  magnitudes  estimated.  The  outputs  are  a set of  time  series  with  no  data  gaps  at  a succession
of  spatial  scales,  together  with  information  at each  scale  about  the  climatological  shape  of the  annual
cycle,  and  the  timing  and  magnitude  of  the  principal  and  secondary  blooms  in each  year.  To  illustrate
the  application  of the algorithm  we present  the results  from  a  12 year time  series  of  SeaWiFS  data  from
1998  to 2009  in  the  North  Atlantic;  the  timings  and  magnitudes  of  blooms  show  strong  spatial  patterns,
and  hence  are  suitable  for  incorporation  into  the  definitions  of ecological  provinces.  Due to its  generic
nature,  the  handling  of data  gaps and  the  lack of reliance  on  a pre-defined  seasonal  cycle,  the  method  has
a  wide  range  of other  potential  applications  including  land-based  phenology  and  the  study  of  the  timing
of  seasonal  sea ice  cover.

Crown Copyright ©  2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Phenology, or the timing of changes in the annual biological
cycle, is a key factor in the assessment of trends in ecosystems, and
phenological methods are well established in studies of terrestrial
ecosystems (see White et al. (2009) for an overview). Significant
impacts of climate change on phenology have been documented
in many terrestrial ecosystems (Badeck et al., 2004; Durant et al.,
2007). Interest in marine phenology has grown more slowly until
the last decade, during which time series of ocean colour (visible
wavelength data over oceans) from satellite remote sensing have
attained a sufficient length for elucidation of climatological and
interannual variability in phenology (Racault et al., 2012; Sapiano
et al., 2012). Chlorophyll-a concentration (Chl) is readily available
from satellite ocean colour sensors such as SeaWiFS, MODIS and
MERIS (O’Reilly et al., 2000) and is a good proxy for autotrophic
biomass (Platt and Sathyendranath, 2008). Shifts in the timing of
blooms can have effects at higher trophic levels, including fisheries
(Cushing, 1990; Platt et al., 2003; Koeller et al., 2009), and can be
an indicator of regime shifts in marine ecosystems (Edwards and
Richardson, 2004; Ji et al., 2010).
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The quantification of a phenological measure such as the onset of
a bloom is fraught with difficulties, given the often large interann-
ual variations in the annual cycle of the property used (for example
Chl in marine systems or Normalised Difference Vegetation Index in
terrestrial systems). In temperate latitudes, the typical annual cycle
of marine Chl consists of a spring bloom initiated by seasonally-
renewed light availability and terminated by nutrient depletion
and predation, possibly followed by an autumn bloom, initiated by
upwelled nutrients as stratification breaks down, and terminated
by seasonally-reduced light availability. Other factors often com-
plicate this simple description, for example terrestrial fertilisation
in coastal waters or unusual weather patterns disrupting the cycle
of mixing and stratification. Different considerations also apply in
tropical waters where seasonal light variability is weak and bloom
amplitude is typically much smaller, as well as in Arctic waters
where light is strongly limiting and there is typically only a single
(spring) bloom during the year (Cushing, 1959). Hence a key step
in the description of the annual cycle is to determine whether one
or two  blooms per year occur in a given location. Platt et al. (2009)
suggest that in some locations there may  be a 2-year cycle with
the principal peak alternating in amplitude between 1 year and the
next.

White et al. (2009) describe four approaches used in charac-
terisation of seasonality in terrestrial systems: a global threshold;
a local threshold, defined in relation to the local maximum and
minimum values; a conceptual–mathematical approach, in which
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either a functional form such as a Gaussian is fitted to the annual
time series, or a subset of it, and the bloom onset defined as the
time when the fitted function first exceeds a fraction (e.g. 20%) of
its maximum amplitude, or the series is smoothed and a property
of the smoothed series such as the peak rate of change is used to
define bloom onset; and hybrid methods, in which a curve is fitted
to the series and a global threshold applied to the fitted curve.

For marine systems, Ji et al. (2010) review several approaches to
definition of bloom initiation: global and relative thresholds (Siegel
et al., 2002; Platt and Sathyendranath, 2008); percentile of annual
or seasonal cumulative biomass (Greve et al., 2005); and peak rate
of change, as in the previous paragraph (Rolinski et al., 2007; Koeller
et al., 2009). Other authors have used conceptual–mathematical
methods such as shifted-Gaussian fitting (Platt et al., 2009; Song
et al., 2010; Zhai et al., 2011) or sinusoid fitting (Sapiano et al.,
2012), but these may  not be robust to cases where the true shape
of the seasonal cycle differs from the expected. Many authors focus
on the more-easily-quantified peak position, using methods such
as maximum Chl (Chiba et al., 2008; Kahru et al., 2011) or central
tendency (Edwards and Richardson, 2004). This paper overcomes
the shortfalls of assuming the distribution of the data. We  describe
an extension of conceptual–mathematical methods, in which the
shape of the curve used to fit the series is derived from the Chl data
themselves.

All methods of deriving phenology from intermittent measure-
ments have to handle or be robust to the issue of data gaps. Gaps
in remote sensing time-series can be discrete, due to cloud cover
and atmospheric aerosol, or continuous over a period of time due
to low sun angle in winter at high-latitude. When these gaps cover
key phenological features such as a bloom peak or initiation, large
errors in phenology estimation can result. In subpolar regions, Cole
et al. (2012) quantified the impact of gaps on phenology estimates,
finding typical errors of 30 days for the bloom initiation date and
15 days for the peak date. Some methods reduce the frequency
of gaps by working at a lower spatial or temporal resolution, e.g.
using monthly data instead of daily or weekly, or using one degree
binned data. Others attempt to interpolate across gaps, either spa-
tially (e.g. Beaugrand et al., 2008; Pottier et al., 2008) or temporally
(e.g. Racault et al., 2012). We  use the climatology of the annual cycle
as a basis for interpolation across gaps in the time series for par-
ticular years. Where gaps appear in the climatology of the annual
cycle at a particular spatial resolution, we use the climatology at
a lower spatial resolution as a basis for interpolation across gaps
at the higher resolution. This makes the algorithm robust even at
high spatial and temporal resolution with respect to gaps in the
data such as those caused by cloud cover, which might otherwise
cause problems. This scale-changing approach is similar to that of
Pottier et al. (2008), who use wavelets to reconstruct complex spa-
tial patterns in Chl data with gaps. Our method is simpler and in
theory should be more robust to data outliers.

In this work we demonstrate the use of the scale-changing
technique to investigate Chl phenology in the North Atlantic. We
show that the resulting phenological indicators show strong spa-
tial coherence and can be used to classify the study area into regions
(provinces) characterised by different phenologies.

2. Materials and methods

2.1. Datasets

Our study area is a region of the North Atlantic from 35◦N to
58◦1′19′′N, 75◦W to 11◦0′29′′E (Fig. 1), including the highly dynamic
subpolar front and regions of coastal shelf sea. We  use 12 years of
Chl derived from the NASA SeaWiFS sensor between 1998 and 2009
(Feldman and McClain, 2010). The northern limit was chosen to

Fig. 1. The study area (shown as a white box). Limits are 35◦N to 58◦1′19′′N, 75◦W
to  11◦0′29′′E. Biogeographical provinces from Longhurst et al. (1995) are shown in
black.

exclude regions where a winter gap occurs in the SeaWiFS data due
to low light levels during the northern hemisphere winter months.
All available level 2 scenes intersecting the area were downloaded
from NASA, and the OC5 Chl algorithm (Gohin et al., 2002) modi-
fied to include low Chl waters (Tilstone et al., 2011) was applied to
all pixels with valid remote sensing reflectance (RRS). The modified
OC5 algorithm converges with the standard OC4 algorithm at low
Chl, but has been shown to be more robust in optically-complex
coastal waters with high Chl (Gohin et al., 2002; Tilstone et al.,
2011). Hence the algorithm is applicable to both the open ocean
where OC4 is valid, and coastal waters where OC4 often gives erro-
neously high Chl values. The resulting Chl values were mapped to an
equidistant cylindrical projection with 4 km equatorial spatial res-
olution. Eight day composites were then generated by calculating
the interquartile mean Chl and the number of valid Chl estimates
at each pixel for each 8-day period (henceforth referred to as the
Chl count). The resulting set of 8 day composites (46 per year) were
used to estimate phenological parameters as described below.

2.2. Methods

2.2.1. Algorithm overview
The first step in the method is a scale-changing technique to fill

data gaps by successively reducing the spatial resolution until all
gaps are filled at low spatial resolution. Next, starting at the lowest
spatial resolution (the entire scene treated as a single pixel) and
successively increasing the resolution, the climatological shape of
the annual cycle is determined using data from all years at that loca-
tion. The climatology is then adjusted for each year to fit that year’s
Chl cycle. Bloom initiation is determined using a relative thresh-
old. The algorithm is robust with respect to gaps in the data such
as those caused by cloud cover, which might otherwise compro-
mise fitting of the seasonal cycle. It uses information from a range
of spatial scales to interpolate over time, filling all gaps in the data
to provide an estimate of how the time series would look in the
absence of such gaps. Fig. 2 shows a flowchart of the algorithm.

2.2.2. Reduction in effect of outliers
Phenological indicators tend to be highly sensitive to outliers in

the data; therefore we have taken a number of steps to minimise
their occurrence:

(1) We  mask pixels affected by coccoliths using a comprehensive
coccolith detection algorithm (Shutler et al., 2010);

(2) We  composite using the interquartile mean rather than the
mean; and

(3) We  use the OC5 Chl algorithm (Gohin et al., 2002) modified to
include low Chl waters (Tilstone et al., 2011).

These measures significantly reduce the number of anomalous
Chl values appearing in the time series. Coccoliths cause the water
to become uniformly brighter, with the result that the band ratio
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