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a  b  s  t  r  a  c  t

Chronically  elevated  reactive  nitrogen  deposition  has a severe  impact  on many  ecosystems,  and  there
is widespread  interest  in  the  possibility  of  using  plant  community  composition  to estimate  the  level
of  nitrogen  deposition  and  consequent  impacts.  Existing  approaches  use  a variety  of  simple  measures
including  functional  type  ratios,  Ellenberg  numbers,  and diversity  indices.  We  propose  an  alternative
approach  in which  species–environment  models  are  constructed  using  national  datasets  designed  to  cap-
ture broad-scale  deposition  patterns.  We  construct  models  using  partial  least  squares,  weighted  average,
and maximum  likelihood  Gaussian  logit  regression  for  two  British  semi-natural  habitats,  and  test  how
well  they  predict  N deposition  by  cross-validation.  We  find  that  performance  is good  with  R2 values  up
to  0.7, and  suggest  that such  models  could  be a  useful  addition  to  the  bioindication  toolbox.

©  2012  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Deposition of reactive nitrogen (N) largely derived from inten-
sive agricultural and industrial activity is an increasingly urgent
conservation concern. A wealth of evidence links N deposition
to loss of biodiversity, plant community change and degradation
of ecosystem services (Bobbink et al., 1998, 2010). In developing
countries N deposition is increasing rapidly and constitutes a clear
threat to biodiversity hot-spots and protected areas (Bleeker et al.,
2011; Phoenix et al., 2006). While N deposition is stabilising, or
even falling in much of the industrialised world, ecosystems carry
a legacy of past deposition which will not be quickly reversed.
National- and international-scale models of N deposition (Jonson
et al., 1998; Smith et al., 2000; Fagerli and Aas, 2008) repre-
sent the large-scale distribution of pollution reasonably accurately,
but cannot show the local-scale impacts of point sources such as
individual industrial or agricultural units. It is these local-scale
impacts which are usually the concern of practical conservation
management, where the interest is often in the impacts of a spe-
cific polluter on an individual designated site. Protected areas are
preferentially located in topographically complex regions (Joppa
and Pfaff, 2009) where large-scale deposition models perform less
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effectively (Sutton et al., 2004). Considerable research attention has
therefore focussed on the identification of bioindicator approaches.
Bioindicators can be used to identify both the level of pollution
and the impacts of pollution exposure, although this distinction
is rarely made explicit. Among the many approaches to bioindi-
cation of nitrogen pollution (Sutton et al., 2004), studies have
investigated the potential of plant community-based bioindica-
tors using the occurrence or abundance of indicator species, or
derived indices such as Ellenberg values, plant functional type
ratios and diversity measures (Pitcairn et al., 2002, 2003; Stevens
et al., 2009). Although results have often shown significant rela-
tionships with N deposition, the strength of this relationship is
variable.

We propose an alternative concept in which relationships
between plant species composition and N deposition are mod-
elled using national vegetation datasets and N deposition models.
These species–environment models can be calibrated using sites
better suited to national-scale models (away from point sources
and complex topography), and then applied to predict deposition in
situations where national-scale deposition models are less appro-
priate. The approach essentially uses vegetation–N relationships
to down-scale national deposition models. In this paper we test
the concept that the vegetation composition of a set of plant com-
munities that fulfil certain criteria can be used to develop models
to predict the cumulative N deposition at other sites comprising a
similar vegetation type.
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Table 1
Model performance for grassland and heathland data showing model structure and
R2, root mean squared error of prediction (RMSEP) and maximum bias (Max Bias)
determined by jack-knife cross-validation. Model results illustrated in Fig. 1 marked
‘*’.

R2
jack

RMSEPjack Max  Biasjack

Grasslands
PLS (3 component) 0.43 548 623
ML*  0.64 464 1440
WA  (inverse deshrinking) 0.46 526 677

Heathlands
PLS  (1 component)* 0.70 367 695
ML  0.62 456 586
WA  (inverse deshrinking) 0.61 421 759

2. Materials and methods

We  model the relationship between species abundance and N
deposition for two semi-natural UK vegetation types using three
alternative regression approaches. We  use UK vegetation datasets
of average species cover for acid grasslands (%), and frequency
(occurrence per quadrat) for heather moorlands. The acid grassland
dataset encompasses 64 sites of UK National Vegetation Clas-
sification (NVC: Rodwell, 1992) type U4, (Festuca ovina–Agrostis
capillaris–Galium saxatile grassland) sampled in 2002–3 (Stevens
et al., 2004, 2006). The heathlands dataset (NVC type H12, Cal-
luna vulgaris–Vaccinium myrtillus heath) combines the data of
Edmondson et al. (2010) and Caporn et al. (2009) giving 36 sites
sampled in 2005 and 2006. While the grasslands data includes all
plant species the heathlands data includes bryophytes alone. All
studies used five quadrats per site.

In both datasets, N deposition is the strongest environmental
correlate with community composition, and appears to be a key
agent of vegetation change (Payne et al., 2011, unpublished). We
use modelled cumulative N deposition between 1900 and the year
of sampling rather than modelled current N deposition, reflecting
an increasing weight of opinion that cumulative deposition better
represents how ecosystems respond to N pollution (Duprè et al.,
2010; De Schrijver et al., 2011). We  apply the scaling factors of
Fowler et al. (2004) to output from the Centre for Ecology and
Hydrology CBED model (Smith et al., 2000) to calculate cumula-
tive nitrogen deposition since 1900 on a 5 km × 5 km grid basis.
The cumulative N deposition range was 430–2856 kg N ha−1 (mean:
1742, sd: 720) for the grassland sites and 459–3067 kg N ha−1

(mean: 1886, sd: 671) for the heathlands.
We test three regression techniques based on two  contrasting

concepts of how species abundance may  respond to N deposition.
The simplest concept assumes that species respond linearly to N
deposition: an increase in N deposition produces an increase or
decline in each species. Multiple linear regression performs poorly
for ecological data with large number of species whose abundances
are strongly correlated (e.g. Ter Braak and van Dam, 1989). We
test an alternative approach: partial least squares (PLS) regres-
sion. PLS attempts to extract a minimal number of latent factors
or components from a training set which explain the variability in
the environmental data (Geladi and Kowalski, 1986). PLS has been
applied in several previous ecological studies (e.g. Charman, 1997)
and has been used for the bioindication of nitrogen deposition with
metabolic finger-print data (Gidman et al., 2006).

The assumption of a linear relationship between species abun-
dance and cumulative N deposition may  be valid if impacts are due
to direct toxicity, species are at the edge of their environmental
tolerances or where there is a limited range of deposition values.
However, N is an essential nutrient for plants so an alternative
hypothesis is that, for many species, small inputs may  be beneficial
but larger additions deleterious, producing a unimodal response.

We  therefore also test two  regression techniques which assume a
unimodal response of species abundance to N deposition.

In maximum likelihood (ML) Gaussian logit regression, the rela-
tionship between an environmental variable and abundance of each
species is modelled as a Gaussian curve. Maximum likelihood esti-
mation is used to determine the value of the environmental variable
with the highest probability of being associated with a particu-
lar community composition; this estimate is the model prediction
(for details of computation see Birks, 1995). The method has been
shown to perform well with simulated data and real ecological
datasets (Ter Braak and Looman, 1986), but it is relatively complex
and computationally intensive.

An alternative unimodal technique is weighted average (WA)
regression, in which it is assumed that a species will be most abun-
dant in a site with environmental conditions close to the species
optimum; a reasonable approximation of the species optimum is
therefore made by calculating the average environmental values of
all the sites in which the species occurs, weighted by the abundance
of the species in those sites. An estimate of the environmental vari-
able for an unknown site is provided by a weighted average of the
optima of all species present. As this procedure serves to compress
the environmental gradient a de-shrinking regression is applied to
remove this compression. WA  is less statistically rigorous than ML
but is computationally simpler and often has superior performance
in practise (Birks et al., 1990; Ter Braak and van Dam, 1989).

Assumptions of all these models include the independence of
samples, lack of confounding secondary gradients and the pres-
ence of a direct (or indirect but linear) relationship between the
species and the environmental variable of interest. These assump-
tions, and the consequences of their violation, are discussed in
greater depth by Birks (1990, 1995, 1998),  Belyea (2007) and Ter
Braak and Prentice (1988).

We  applied all three techniques (PLS, ML  and WA)  to both of
the vegetation datasets. We  assessed model performance statisti-
cally by applying the model to the same dataset used to construct
the model. To avoid overly optimistic estimates of performance
if the same data are used to both build and test models we  used
jack-knife (‘leave-one-out’) cross-validation in which models are
successively constructed using n − 1 samples with the remaining
sample serving as a test. Performance statistics used are the R2

between observed and predicted values, the root mean squared
error of prediction (RMSEP) and the Maximum Bias (cross-validated
values are denoted R2

jack, RMSEPjack and Max  Biasjack). These three
measures provide distinct but complementary information about
the performance of models: R2 gives a measure of the overall
strength of relationship between observed and predicted values,
RMSEP gives a measure of average errors along the gradient and
Maximum Bias gives a measure of maximum mean error for any
one tenth of the gradient. Models were developed using C2 (Juggins,
2003).

3. Results

All models produced RMSEP values below the standard devia-
tion of the nitrogen deposition data, so all can be considered to have
predictive power despite the limited size of the training sets. RMSEP
values suggest that these models may  be able to predict cumulative
N deposition with a mean error as low as 367 kg N ha−1, 15% of the
range captured by the vegetation dataset (Table 1).

For the acid grasslands data the best-performing model in terms
of R2 and RMSEP is ML  and in terms of maximum bias is a 3-
component PLS model. For the heathlands data the best-performing
model is a single-component PLS model for R2 and RMSEP and ML
for maximum bias. Model performance with the heathland data is
superior to that of the grasslands, despite the smaller dataset size
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