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We provide a mathematical proof that a large number of elementary cellular automata 
are computationally simple. This work is the first systematic classification of elementary 
cellular automata based on a formal notion of computational complexity.
It contrasts with previous approaches in the simplicity of the method – most proofs are 
just a few lines long and require no heavy computational explorations. More importantly, 
this type of short proof not only provides evidence for the presence of simple patterns, it 
also provides reasons for this simplicity.
Moreover, thanks to the generality of communication complexity, we hope that this 
work finds new applications to other natural systems such as neural networks and gene 
regulatory networks, in particular for real data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many computational processes can be seen as a sequence of information exchanges between parts of the space. Moreover, 
a large number of natural systems, either physical or biological, bear close similarity to algorithmic processes, in the sense 
that they are dynamical processes, in which local information exchanges play an important role, as noticed for instance 
by Maxwell [19] in his “daemon” thought experiment, or more recently by biologists working with DNA, or by quantum 
information theorists [1].

In this work, we present a method to analyze such systems, and apply it systematically to a popular class of cellular au-
tomata, showing that most of them are computationally simple. This task was previously tackled, using a different approach, 
by Israeli and Goldenfeld [14,15], who showed that many elementary cellular automata can be “coarse-grained”, meaning 
that they were able to build a simulation hierarchy. In their work, the property that A simulates B means that B is equal to 
some projection of some rescaling of A. However, that notion of simulation is not well understood, as even the existence of 
a universal cellular automaton for it is a long-standing open problem of the field [3]. The relation between their work and 
ours may shed new light on this problem.

That approach is thus physically and computationally relevant, but relies on the exhaustive exploration, using computer 
programs, of a large number of possible projections. In this work, we bring this search for simplicity to a new level, by 
giving a simple proof method showing that our objects of study are simple. It must be stressed that although algorithmic 
explorations are good at determining whether something is true, mathematical proofs also explain why it is true. There-
fore, our approach, as well as the discrete nature of cellular automata, allows for a “hybrid proof method” in which both 
approaches are used. We hope that it can be applied to other systems, and especially to real world data, to find simple 
patterns.
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1.1. Main results

Although a number of terms have not yet been defined, we state the main result of our paper. The proof of this theorem 
is presented in Section 3.

Theorem 1.1. 56 of the 88 non-isomorphic elementary cellular automata are not intrinsically universal.

Our result makes extensive use of the tools developed in [4]. Its main contribution is to exhibit, for a large number of 
cellular automata, a communication protocol of sublinear complexity. Similarities between the protocols and problems used 
form more relevant complexity classes than previous “experimental classifications” such as [28].

Moreover, it extends the results of [10,4,11] by giving simple protocols for several elementary cellular automata that [10]
could not prove non-intrinsically universal.

1.2. Key technical ideas and methods

Our main tool in this task is called communication complexity, which is a computational model introduced by Yao [29]
to prove lower bounds in VLSI design (see [18] for a full introduction).

Cellular automata are a model of computation primarily consisting of a large number of simple local interactions. This 
kind of dynamics is ubiquitous in many physical or biological processes; developing powerful tools to analyze these objects 
therefore seems an important step in the study of these systems.

Originally introduced by von Neumann [27] to study self-reproduction of computationally meaningful “organisms”, cel-
lular automata have given rise to a rich theory: in particular, their computational capabilities have been extensively studied 
[17,12,16,21]. The idea of universality modulo rescaling, also called intrinsic universality, has also originated in this model [23,
26,2,9], before inspiring research in other fields, most notably in tile self-assembly [24,8,7,6], where it helped understand 
long-standing open problems of that domain [20].

This notion of simulation is stronger than Turing universality, and allows reasonings on geometric or topological prop-
erties, that are most of the time preserved by this operation. However, it is not too strong to be meaningful: indeed, 
intrinsically universal cellular automata have been known for some time [23].

The simplest examples of cellular automata, the one-dimensional ones with two states and two neighbors, are called 
elementary. Since the simulation works of Wolfram [28], they have received a lot of attention, culminating in a result by 
Cook showing that one of these rules (called “rule 110”), is capable of arbitrary Turing computation [5]. His construction 
was later improved by Neary and Woods [22].

However, being able to program a system, i.e. to use it to perform nontrivial algorithmic operations, does not mean that 
we understand its computational capabilities. On the contrary, complexity lower bounds require such an understanding: for 
example, showing that a class of logic circuits is not able to compute some function requires a full understanding of its 
capabilities, to make sure that no “hidden trick” allows it to compute that function.

1.3. With experimental data

A key point of our approach, is that it is directly adaptable to experimental data: indeed, the communication complexity 
of a function can also be computed experimentally. For instance, in Section 3.1, we provide experimental measurements of 
the one-round variant of communication complexity for all the elementary cellular automata that we have not been able to 
understand.

The method for these calculations is explained in [18]. Briefly, the algorithm consists in cutting the initial configuration 
into two parts of equal length, for all configurations of size 2n + 1 for some integer n. One part is given to Alice, the other 
one is given to Bob. Then, we build a matrix M where each row represents one possible input a for Alice, and each column 
represents one possible input b for Bob. Then, Ma,b is the value of the function we wish to calculate; in the case of Fig. 2, 
the evolution of the central cell after n steps. If Alice’s configurations are of size n + 1, and Bob’s are of size n, this means 
that this matrix is of size 2n+1 × 2n .

Using experimental or simulation data can be done by studying the one-round communication complexity, which is equal 
to the log of the number of lines in M [18]. The one-round communication complexity is the communication complexity 
restricted to simpler protocols where only one of the players is allowed to speak.

2. Definition and preliminaries

Let Q be a finite set called the set of states.
A cellular automaton is a map of Q Z to itself, defined by a local rule f : Q 2r+1 → Q for some integer r. The cellular 

automaton defined by a local rule f is the map F such that for all x ∈ Q Z , all i ∈ Z, (F (x))i = f (xi−r, xi−r+1, . . . , xi+r). In 
this case, F is also called the global rule. An important particular case of cellular automata is the shift operator σ , which is 
the map defined for all x ∈ Q Z by (σ (x))i = xi+1 for all i ∈ Z. Remark for example that any cellular automaton commutes 
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