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a b s t r a c t

Soil texture is an important soil characteristic that drives crop production and field management, and
is the basis for environmental monitoring (including soil quality and sustainability, hydrological and
ecological processes, and climate change simulations). The combination of coarse sand, fine sand, silt, and
clay in soil determines its textural classification. This study used Geographic Information Systems (GIS)
and regression-tree modeling to precisely quantify the relationships between the soil texture fractions
and different environmental parameters on a national scale, and to detect the most important parameters
that can be used as weighted input data in soil environmental prediction models. Seven primary terrain
parameters (elevation, slope gradient, slope aspect, plan curvature, profile curvature, flow direction,
flow accumulation) and one compound topographic index (CTI) were generated from a Digital Elevation
Model (DEM) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used
along with digital data collected from other sources (existing maps and available pluviometric stations),
i.e. parent materials, landscape types, geographic regions, yearly precipitation, seasonal precipitation
to statistically explain soil texture fractions field/laboratory measurements (45,224 sampling sites) in
the area of interest (Denmark). The developed strongest relationships were associated with clay and
silt, variance being equal to 60%, followed by coarse sand (54.5%) and fine sand (52%) as the weakest
relationship. This study also showed that parent materials (with a relative importance varying between
47% and 100%), geographic regions (31–100%) and landscape types (68–100%) considerably influenced
all soil texture fractions, which is not the case for climate and DEM parameters. Yearly and seasonal
precipitation had a significant impact on clay and silt; elevation had higher influence on coarse sand
(13%), fine sand (12%) and clay (10%) where; slope gradient influenced silt (11.5%); slope aspect (14%)
and CTI (9%) influenced fine sand; and profile/plan curvatures and flow direction/accumulation did not
interfere in the building of the soil texture regression trees and associated relationships. The latter can
be extrapolated to other areas sharing similar geo-environmental conditions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Soil plays a crucial role in the environment and also for human
life. A knowledge and understanding of soil and how it is distributed
across the landscape is crucial for the effective use and environ-
mental management of this vital resource. Soil texture is one of
the most important soil properties, affecting many of the physi-
cal and chemical characteristics and behavior of the soil, such as
the soil water and nutrient holding capacities, hydraulic conduc-
tivity, friability, and resistance to cultivation. Spatial distribution
and variability of the various soil texture fractions (coarse sand %,
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fine sand %, silt % and clay %) is increasingly being required for
input into ecological, hydrologic, climatic, and other environmen-
tal models, particularly due to ever-rising environmental concerns
relating, for example, to the prognosis for agricultural yields and
carbon stocks at a global level. In addition, there is a pressing
need for precise and accurate predictive quantifications of the
relationships between each of the soil texture fractions and key
environmental parameters (climate, topography, parent material,
etc.) to assist in site-specific, economic and sustainable manage-
ment of the environment. Such relationships form the basis of
environmental prediction modeling and digital soil mapping (DSM)
programs, which are widely considered to be the cornerstone of
future soil surveys (Grunwald, 2006; Hartemink, 2006; Kværnø
et al., 2007; Lagacherie and McBratney, 2007; Gray et al., 2009;
He et al., 2010). Traditionally, soil–environment relationships have
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been of a qualitative nature rather than a quantitative nature (Gobin
et al., 2001; Heuvelink, 2005), dividing soil texture into classes
rather than numerically defining specific soil texture fractions. In
most studies and soil surveys, soil texture has been applied to par-
ticular regions (ranging from site/hillslope to catchment) (Lamsal
and Mishra, 2010), and their enunciation is often unclear. For exam-
ple, it is widely reported that topography influences soil texture
(McKenzie et al., 2000; Dobos and Hengl, 2009), but there is lit-
tle detail on what the precise predictive influence is, particularly
in quantitative terms. Moreover, and referring to the fundamental
soil equation and the associated state factor model (Clorpt model)
of soil formation (Jenny, 1941), the ability to derive quantitative soil
texture–environment relationships on a broad scale is inhibited by
the complexity of mathematical correlations that are difficult to
understand and analyze. The latter can be partially solved through
the use of individual pedofunctions (McBratney et al., 2003), but
these functions are applied mainly to relatively small locations, and
their transferability to wider contexts is questionable.

The advent of digital terrain analysis and allied raster-based
Geographic Information Systems (GIS) technologies over the past
couple of decades has created an opportunity for the development
of more scientifically and statistically based methods and models
relating soil properties to digital environmental data [multivariate
correspondence analysis (MCA), generalized linear models (GLMs),
generalized additive models (GAMs), artificial neural networks
(ANNs), etc.] that overcome several of the limitations of conven-
tional soil surveys (McBratney et al., 2003; Scull et al., 2003; Zhai
et al., 2006; Kværnø et al., 2007; Hartemink et al., 2008; Zhao et al.,
2009; He et al., 2010). However, these methods are heterogeneous
in terms of environmental input data, predictive power, ease of
use, sensitivity to parsimony, ease of interpretability, handling of
mixed data, handling of non-linear relationships, etc. For instance,
the multivariate correspondence analysis (MCA) detects the per-
centages of the total inertias for the uncorrelated principal axes
that are linear combinations of the environmental parameters
(González et al., 2007). A major limitation of this analysis is the
unique combination of axes together defining a unique condition of
a given subarea. Generalized linear models (e.g., linear regression,
nonlinear and logistic regression, probabilistic regression) are
not flexible enough to allow robust integration with a variety
of potential data sources [e.g., remote sensing data, topographic
surfaces of Digital Elevation Models’ (DEMs)] for the investigated
soil texture–environment relationships (Fox and Melta, 2005;
Selige et al., 2006; Lesch and Corwin, 2008). Linear regression
models are limited by their assumed linear relationship between
soil and environmental parameters, their assumptions of normally
distributed data and their high data requirements. Similar to
linear regression models, nonlinear and logistic regression-based
models cannot easily look for interactions between soil texture
and influencing environmental parameters. An important problem
with these models is that we cannot evaluate the contribution
to the model of each environmental parameter. Another problem
with the Bayesian methods (D’Or and Bogaert, 2003; Grunwald,
2009) is that the identification and weighting of the environmental
parameters influencing the various soil texture fractions remain
highly subjective, and dependent on the expertise of different soil
surveyors, with their overall accuracy and reliability remaining
largely unevaluated. Artificial neural networks (ANNs) also have a
number of drawbacks for predicting soil texture–environment rela-
tionships. Neural nets are unsatisfactory because of the difficulty
of interpretation and requirement for specialized skills. They are
also criticized for their inability to identify the relative importance
of potential predictor environmental parameters (Berk, 2003;
Janik et al., 2009). Likewise, generalized additive models (GAMs)
are difficult to interpret and might have problems detecting the
parsimony (Berk, 2003). Unsupervised machine learning methods

like cluster analysis, factor analysis (principal component analysis)
treat all environmental parameters influencing soil texture equally
without predicting the value of a given parameter (Shukla et al.,
2006; Concepción Ramos et al., 2007). These methods tend to look
for patterns, groupings or other ways of characterizing the data
that may lead to the understanding of the way the data interrelate.

Regression trees are often compared to the previously men-
tioned numerically oriented techniques and methods (Wilson and
Gallant, 2000; Vega et al., 2010), but tree-based models are easier
to interpret and discuss when a mix of continuous (e.g., elevation)
and nominal (e.g., parent material) environmental parameters are
used as predictors. They are scalable to large problems (Wilson and
Gallant, 2000), invariant to monotone re-expressions (transforma-
tions) of predictor parameters (Scull et al., 2003), and can optimize
non-additive and non-linear relationships between inputs (e.g.,
environmental parameters) and outputs (soil texture fractions)
(McKenzie et al., 2000; Grunwald, 2009). In addition, they are non-
parametric/probabilistic, and do not require the specification of
the form of a function to be fitted to the data, as is necessary for
other competing procedures (e.g., non-linear regression) (Breiman,
2001; Lawrence et al., 2004; Henderson et al., 2005). In contrast to
ANNs, once regression-tree models have been built, they can be
converted to statements that are implemented easily in most com-
puter languages (Razi and Athappilly, 2005). Regression trees also
have excellent predictive capabilities (Breiman, 2001; Lawrence
et al., 2004; Henderson et al., 2005; Razi and Athappilly, 2005), but
they have been criticized for overfitting and for poor performance
on small datasets (McKenzie et al., 2000).

In this context, our study aimed to implement systematic regres-
sion tree-based models and evaluate their ability to develop broad
quantitative relationships between the various soil texture frac-
tions and the environmental soil-forming parameters across large
areas (A horizons – depth ranging between 0 and 30 cm) that can
be used in quantitative soil mapping and environmental modeling
exercises on a national scale. Denmark is used as the case study
since national agricultural and environmental authorities have a
crucial need for information about the soil textural composition
(coarse sand, fine sand, silt and clay expressed in percent) and
related digital environmental data. This country has also a mas-
sive national database consisting of 45,224 soil samples, which in
conjunction with auxiliary environmental parameters can be used
to examine the soil texture–environment relationships. The result-
ing predictive soil texture–environment relationships may provide
valuable insights into soil formation/distribution and soil model-
ing/mapping, and can serve as useful tools for land use management
and environmental decision-making.

2. Study area description

The study area (Fig. 1) covers the soils of Denmark, i.e. around
43,000 km2. The central and eastern part of the country consists
of a Last Glacial (Weichselian) morainic landscape (18,330 km2

or 43% of the total area of Denmark) with mainly loamy soils
on calcareous tills. The western part of the country, which was
not covered by ice during the Last Glacial, consists of low-relief,
glaciofluvial, sandy sediments (5020 km2 or 12%), emanating from
melting glaciers, surrounding slightly protruding ‘islands’ of the
older and strongly eroded landscapes of earlier (Saalian) glacial
eras (4731 km2 or 11%). The northern part of the country con-
sists of a Weichselian glacial core bordered by uplifted marine
sediments from early and mid-Holocene. Sand dunes are found
in the coastal areas, particularly on the west coast, and as patchy
inland deposits. The southwestern coastal region is a salt marsh,
dominated by recent fine-textured tidal sediments. Throughout
the country, poorly drained basins have been filled with the fine
inorganic sediments (gytje) and peat during the Holocene.
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