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The data refinement of reaction-based models consists in substituting species from the 
original model with several subspecies in the refined one. Fit-preserving refinement, where 
the goal is to capture the same species dynamics as the original model, helps reduce 
the computational cost of model fitting by reusing previously fit rate constants. In this 
paper we give a complete characterization of fit-preserving refinement, as necessary and 
sufficient linear constraints on the reaction rate constants. Our result is applicable for 
mass-action reaction networks with uniquely identifiable rate constants. We demonstrate 
our result on the well-known Brusselator model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The top-down development of large biological models relies on iteratively adding details to an initial abstraction of the 
biological phenomena. At each step, the numerical setup of the mathematical model that describes the dynamic behavior 
of the system needs to be fit against existing experimental data. Model fitting is often a computationally expensive process, 
thus it would be beneficial to reuse previously fit values to initialize the parameter estimation routines for the refined 
model.

We focus here on reaction-based models that rely on mass-action kinetics [1]. Data refinement, introduced in [2], refers 
to the replacement of one (or more) species with several variants, or subspecies, in the refined model. The approach pre-
sented in [2] for the numerical setup of the refined model aims to preserve the fit of the original model and consists in 
assigning parameter values in such a way that the ODEs describing the original model can be recovered as a sum of ODEs 
from the refined model. We formalized this idea in [3] as fit-preserving refinement and provided a sufficient condition for 
preserving the numerical fit. The condition links the refined parameters to those of the original model without the need for 
inspecting the ODEs.

The approach from [3] provides a partial answer to the open problem, formulated in [4], of finding values for the 
unknown parameters of a partially specified refined model so that it preserves the numerical fit of the original model: as 
long as the known values do not already lead to a violation of the fit-preservation constraints, the problem has at least one 
solution, which can be effectively computed.
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Since the proposed condition is only sufficient, for some models it is possible to build fit-preserving refinements for 
which the parameter values do not satisfy the condition. We address this issue here and show that all such models are in 
fact “pathological” cases that do not have uniquely identifiable rate constants, a critical requirement for being able to fit the 
model with experimental data, see [5].

This paper is an extended version of [3]. In addition to [3], we include here the full proof of its main result, as well as all 
mathematical considerations leading to it. Moreover, we prove that the sufficient condition given in [3] is in fact a necessary 
and sufficient condition, i.e. a complete characterization of fit-preserving refinement, provided that the original model has 
uniquely identifiable rate constants. Finally, we illustrate our approach on a new case study, that of the Brusselator [6], to 
show that fit-preserving refinement alone can give rise to very different refined models.

While this paper focuses on the forward direction, note that the idea of refinement can also be played backwards, i.e. 
one can start with a detailed model, which may be difficult to study and understand due to its complex dynamics, group 
together species that behave similarly and obtain a smaller, more general model, for which the dynamic behavior can be 
explored and used to help understand the initial model.

The paper is structured as follows. Section 2 provides an introduction to chemical reaction networks and the main 
formal results related to uniquely identifiable rate constants and solutions of ordinary differential equations. In Section 3 we 
formally discuss fit-preserving refinement and prove the main result of this paper. We apply our approach to the study of 
a simple example, the Brusselator [6], in Section 4, where we analyze four different refinements of the model. We discuss 
the implications of our result in Section 5.

2. Preliminaries

We first fix some notations used throughout the paper. We denote by N the set of non-negative integers and by R≥0 the 
set of non-negative real numbers. For two sets X , Y we denote by X Y the set of mappings f : Y → X ; for a finite set Y , X Y

can also be seen as the set of vectors of dimension |Y | with elements from X . Throughout this paper we will always denote 
vectors with a lower-case bold-faced letter. We will use bold-faced upper-case letters to denote matrices or functions that 
have multiple inputs and outputs.

2.1. Solutions of autonomous ordinary differential equations

Let F : Rn → R
n be a continuously differentiable function. We focus on the solutions of the following autonomous 

ordinary differential equation (ODE):

ẋ = F (x) (1)

with the initial condition x(t0) = x0 . Following common practice in the literature, we will also call this an initial value 
problem (IVP). We can also understand equation (1) as a system of differential equations if we consider the components of 
x and F (x) separately. A solution of such an equation is a function x : I →R

n , where I ⊆ R is an interval containing t0, such 
that x is differentiable and, moreover, ẋ(t) = F (x(t)), for all t ∈ I . It is well known that such IVPs have a unique solution in 
the neighborhood of t0, as long as F satisfies some reasonable assumptions, for example see [7]. Since our work involves 
the careful manipulation of these ideas, we provide (without proof) formal results for both the existence and uniqueness in 
what follows.

First, let us see that if we are given a solution x of equation (1) with the given initial condition, then the function 
x(t − t0) satisfies the same differential equation, with the initial condition specified at 0, i.e. x(0) = x0 . Thus, it suffices to 
only consider initial conditions specified for t0 = 0.

Theorem 1. Let F : Rn → R
n be a continuously differentiable function and x0 ∈ R

n. Then there exists a closed interval [−a, a] and a 
unique function x : [−a, a] →R

n such that ẋ(t) = F (x(t)) for all t ∈ [−a, a] and x(0) = x0 .

For a complete proof of Theorem 1, the reader may see [7]. The uniqueness applies also for extensions of the solution 
to larger intervals. In particular, we can consider the maximal time domain for which a solution exists and refer to the 
corresponding solution as the solution of the equation for the given initial condition.

Definition 1. Let F : Rn → R
n be a continuously differentiable function. For every α ∈ R

n , we will use a[α] to refer to the 
unique, maximal (with respect to its time domain) solution of the differential equation ȧ = F (a), with a(0) = α. We will 
use dom(a[α]) to denote the domain of a[α].

Note that the time domain of a solution a[α] may also depend on the actual value of α .

2.2. Reaction networks

We consider in this paper that all reactions are irreversible; any reversible reaction is replaced by its “left-to-right” and 
“right-to-left” irreversible reactions. We formalize in the following the notion of a reaction, using both a rewriting rule style, 
and a vectorial style.
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