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Boolean domain {0, 1}. A satisfying assignment is locally maximal if any new assignment
which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint
language I', #LocalMaxCSP(I") denotes the problem of counting the locally maximal
satisfying assignments, given an input CSP with constraints in I". We give a complexity

Keywords: dichotomy for the problem of exactly counting the locally maximal satisfying assignments
Constraint satisfaction problem and a complexity trichotomy for the problem of approximately counting them. Relative to
Computational complexity of counting the problem #CSP(I"), which is the problem of counting all satisfying assignments, the
problems locally maximal version can sometimes be easier but never harder. This finding contrasts
Approximate computation with the recent discovery that approximately counting locally maximal independent sets

in a bipartite graph is harder (under the usual complexity-theoretic assumptions) than
counting all independent sets.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Boolean Constraint Satisfaction Problem (CSP) is a generalised satisfiability problem. An instance of a Boolean CSP is
a set of variables together with a collection of constraints that enforce certain relationships between the variables. These
constraints are chosen from an agreed finite set (“language”) I' of relations of various arities on the Boolean domain {0, 1}.
The study of the computational complexity of Boolean CSPs has a long history, starting with Schaefer, who described the
complexity of the basic decision problem: is a given Boolean CSP instance satisfiable? The computational complexity of
the satisfiability problem depends, of course, on the constraint language I', becoming potentially harder as I' becomes
larger and more expressive. Schaefer showed [15] that, depending on I, the satisfiability problem is either polynomial-time
solvable or NP-complete, and he provided a precise characterisation of this dichotomy.

The problem #CSP(I") is the problem of determining the number of satisfying assignments of a CSP instance with
constraint language I'. A dichotomy for this counting problem was given by Creignou and Hermann [1].
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Theorem 1. (See Creignou, Hermann [1].) Let T' be a constraint language with domain {0, 1}. The problem #CSP(T") is in FP if every
relation in T is affine. Otherwise, #CSP(I") is #P-complete.

A relation is affine if it is expressible as the set of solutions to a system of linear equations over the two-element field ;.
The constraint language T is said to be affine if and only if every constraint in I is affine. Thus, Theorem 1 shows (assuming
FP £ #P) that #CSP(I") is tractable if and only if the set of satisfying assignments can be expressed as the set of solutions
to a system of linear equations.

Since most constraint languages I' lead to intractable counting problems, it is natural to consider the complexity of
approximately counting the satisfying assignments of a CSP. Dyer, Goldberg, Greenhill and Jerrum [7] used approximation-
preserving reductions (AP-reductions) between counting problems to explore the complexity of approximately computing
solutions. They identified three equivalence classes of interreducible counting problems within #P: (i) problems that have
a polynomial-time approximation algorithm or “FPRAS”, (ii) problems that are equivalent to #BIS under AP-reductions, and
(iii) problems that are equivalent to #SAT under AP-reductions. Here, #BIS is the problem of counting independent sets in a
bipartite graph and #SAT is the problem of counting the satisfying assignments of a Boolean formula in CNF. Dyer, Goldberg
and Jerrum [8] show that all Boolean counting CSPs can be classified using these classes.

Theorem 2. (See [8, Theorem 3].) Let T be a constraint language with domain {0, 1}. If every relation in T is affine then #CSP(T") is
in FP. Otherwise if every relation in T is in IMy then #CSP(I") =ap #BIS. Otherwise #CSP(I") =ap #SAT.

In the statement of Theorem 2, =pp is the equivalence relation “interreducible via approximation-preserving reductions”.
In order to define IMy, we must first define the binary implication relation Implies = {(0, 0), (0, 1), (1, 1)}. Then IM; is the
set of relations that can be expressed using conjunctions of these implications, together with unary constraints. The precise
definition of IM; is given in Section 2, along with precise definitions of the other concepts that appear in this introduction.

There are many other questions that one can ask about Boolean CSPs aside from deciding satisfiability and counting
the satisfying assignments. Here, we study the complexity of counting and approximately counting the number of locally
maximal satisfying assignments of a CSP instance. A satisfying assignment is locally maximal if any new assignment which
is obtained from it by changing a single 0 to a 1 is unsatisfying. So local maximality is with respect to the set of 1's in the
satisfying assignment. Also, it is with respect to local changes — changing a single 0 to a 1. Other notions of maximality are
discussed in Section 4.

Goldberg, Gysel and Lapinskas [9] show (assuming that #BIS is not equivalent to #SAT under AP reductions) that count-
ing locally maximal structures can be harder than counting all structures. In particular, Theorem 1 of [9] shows that counting
the locally maximal independent sets in a bipartite graph is equivalent to #SAT under AP-reductions. Obviously, counting all
independent sets in a bipartite graph is exactly the problem #BIS, which is presumed to be easier. Thus, Goldberg, Gysel and
Lapinskas have found an example of a (restricted) Boolean counting CSP (namely, #BIS) where approximately counting lo-
cally maximal satisfying assignments is apparently harder than approximately counting all satisfying assignments. However,
#BIS isn’t exactly a Boolean counting CSP — rather, it is a Boolean counting CSP with a restriction (bipartiteness) on the
problem instance. This prompted us to investigate the complexity of approximating the number of satisfying assignments
of unrestricted Boolean CSPs. In particular, we study #LocalMaxCSP(T"), the problem of counting locally maximal satisfying
assignments of an instance of a Boolean CSP with constraint language T.

Given the phenomenon displayed by #BIS, one might expect to find constraint languages I that exhibit a jump upwards
in computational complexity when passing from #CSP(T") to #LocalMaxCSP(T"), but we determine that this does not in fact
occur. The reverse may occur: counting locally maximal vertex covers in a graph is trivial (there is just one), but counting all
vertex covers is equivalent under AP-reducibility to #SAT. It turns out that this trivial phenomenon, which occurs when the
property in question is monotone increasing, is essentially the only difference between #CSP(I") and #LocalMaxCSP(T").

Our first result (Theorem 3) presents a dichotomy for the complexity of exactly solving #LocalMaxCSP(I") for all Boolean
constraint languages I'. In most cases, #LocalMaxCSP(I") is equivalent in complexity to #CSP(I"). However, if T is essen-
tially monotone (the proper generalisation of the vertex cover property) then #LocalMaxCSP(I") is in FP. Our second result
(Theorem 4) presents a trichotomy for the complexity of approximately solving #LocalMaxCSP(I"). Once again, in most cases,
#LocalMaxCSP(I") is equivalent with respect to AP-reductions to #CSP(I"). The only exceptional case is the one that we
have already seen — if I" is essentially monotone then #LocalMaxCSP(I") is in FP.

The result leaves us with a paradox. There is a very direct reduction from #BIS to #CSP({Implies}) that is “parsimonious”,
i.e., preserves the number of solutions. So #BIS is AP-reducible to #CSP({Implies}) (which can also be seen from Theorem 2).
How can it be, then, that the complexity of approximately counting locally maximal independent sets in bipartite graphs
jumps upwards from the complexity of approximately counting all independent sets, whereas Theorem 4 tells us that
#LocalMaxCSP({Implies}) remains AP-equivalent to #CSP({Implies})?

The resolution of the paradox is as follows. Suppose G = (U, V, E) is an instance of #BIS, i.e., a graph with bipartition
U UV and edge set E C U x V. The parsimonious reduction from #BIS to #CSP({Implies}) simply interprets the vertices
U UV of instance G as Boolean variables, and each edge (u,v) € E as a constraint Implies(u, v). Then there is an obvious
bijection between independent sets in G and satisfying assignments of the constructed instance of #CSP({Implies}), but it
involves interpreting 0 and 1 in different ways on the opposite sides of the bipartition: on U, 1 means “in the independent
set” while on V, 1 means “out of the independent set”. Of course, local maximality is not preserved by this change in
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