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Suppose n colored points with k colors in Rd are given. The Smallest Color-Spanning Ball 
(SCSB) is the smallest ball containing at least one point of each color. As the computation 
of the SCSB in Lp metric (p ≥ 1) is time-consuming, we focus on approximately computing 
the SCSB in near-linear time. Initially, we propose a 3-approximation algorithm running 
in O (n logn) time. This algorithm is then utilized to present a (1 + ε)-approximation 
algorithm with the running time of O (( 1

ε )dn log n). We improve the running time to 
O (( 1

ε )dn) using randomized techniques. Afterward, spanning colors with two balls is 
studied. For a special case where d = 1, there is an algorithm with O (n2) time. We 
demonstrate that for any ε > 0 under the assumption that SETH is true, no approximation 
algorithm running in O (n2−ε) time exists for the problem even in one-dimensional space. 
Nevertheless, we consider the L∞ metric where a ball is an axis-parallel hypercube and 
present a (1 + ε)-approximation algorithm running in O

(
( 1
ε )2d( n2

k ) log2 n
)

time which is 
remarkable when k is large. This time can be reduced to O

(
( 1
ε ) n2

k log n
)

when d = 1.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Background. In computational geometry, most of the time we assume that the points are exact, meaning the exact locations 
of points are known. But in practice, location of input points is imprecise due to several reasons such as device errors, 
network latency, etc. Thus, each imprecise point is defined by a continuous or discrete range which specifies all the possible 
locations [15]. In case of an imprecise point that is modeled with a discrete range such as a point set, the location of 
that point is obtained from any point within its defining set. Therefore, by assigning a distinct color to the points included 
in each defining set, a set of k imprecise points can be modeled by a set of n points with k colors, where n is the total 
number of all possible locations. In this framework, one usually asks for choosing one point from each color to minimize 
or maximize a geometric function such as enclosing ball, closest pair, diameter or the area of convex hull. Similar problems 
may appear in other areas like facility location, statistical clustering, pattern recognition and generalized range searching 
[1,7,17].

Related works. To summarize, n points with k colors in Rd are given; the goal is to select a point from each color such that 
a geometric function is minimized or maximized. The Smallest Color-Spanning Ball (SCSB) is one of the several functions that 
has been studied recently. For the case of d = 2, the SCSB can be computed in O (kn log n) time using the upper envelope of 
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Voronoi surfaces [8]. Moreover, Khanteimouri et al. [12] considered the problem in L∞ metric and presented an O (n log2 n)

time algorithm to solve the problem.
As a generalization, the 2-center problem1 is naturally studied in the context of colored points (the so-called chromatic 

2-center problem). Khanteimouri et al. [13] considered the simplest case where the points are on R1. The problem is to 
compute two smallest intervals with equal length in such a way that together, they span all colors. They presented an 
O (n2 log n) time algorithm which has been recently improved to O (n2) time by Jiang and Wang [11]. Moreover, Jiang and 
Wang showed that approximating the smallest color-spanning t-intervals (similarly, t smallest intervals spanning all colors 
together) is W[2]-hard when t is a parameter—see [11] for more related results.

Our results. In Section 2, we focus on spanning colors with one ball (SCSB problem) for a given set of n points with k
colors in Rd where d is fixed. Since computing the SCSB is time-consuming, we donate our attention to approximate it. We 
start by proposing an O (n log n)-time algorithm to approximately compute the SCSB up to a factor of 3. Then, we use it to 
present a (1 + ε)-approximation algorithm running in O

(
( 1
ε )dn log n

)
time. Moreover, we apply the sieve technique [14] and 

present a randomized (1 + ε)-approximation algorithm to improve the running time to O
(
( 1
ε )dn

)
expected time.

Thereafter, we consider the problem of spanning colors with two balls in Section 3. As a lower bound, we show that 
under the SETH assumption for any constant ε > 0, no approximation algorithm running in O (n2−ε) time exists. This lower 
bound is held even for the case of d = 1 where a ball is an interval. Finally, we consider the L∞ metric and propose a 
(1 + ε)-approximation algorithm in O

(
( 1
ε )2d(n2

k ) log2 n
)

time which is remarkable when k is large. When d = 1, the problem 
can be solved in O

(
( 1
ε )n2

k log n
)

time.

2. Spanning colors with one ball

To our best knowledge, the best known algorithm computing SCSB for n given colored points in Rd runs in O (nd+2)

time using a brute-force method which of course is time-consuming—we recall that when d = 2, the SCSB can be computed 
faster. Therefore, approximating SCSB is worth to be considered. In this section, we focus our attention to approximate the
SCSB in L2 metric. Nevertheless, our results are generally extendible to L p metric for any p ≥ 1.

2.1. Deterministic algorithms

First, we give a constant factor approximation for the SCSB problem and then, we apply it to obtain a (1 + ε)-
approximation algorithm. We start with some definitions.

Definitions. Let P be the given set of n points with k colors in Rd . We know, by the pigeonhole principle, there is a color c
with at most n/k occurrences. Let Pc be the set of points that are colored by color c. We denote the smallest color-spanning 
ball of P by B∗ and its radius by r∗ . In addition, let B(p) be the smallest color spanning ball centered at a point p. Finally, 
H(p, l) is the d-dimensional axis-parallel hypercube centered at a point p whose side length is l.

3-approximation. As the main ingredient of our 3-approximation algorithm, we use the data structure given by 
Arya et al. [2] that reports an approximate nearest neighbour (ANN) in an input set for a query point. Their data struc-
ture is a balanced compressed quadtree which reports a point whose distance to the query point is not more than (1 + ε)

times the distance of the exact nearest neighbour in O ( 1
εd + log n) time. We first construct ANN data structures for each 

color separately in the total time of O (n log n). Using these ANN data structures, one can compute the (1 +ε)-approximation 
of the smallest color-spanning ball with the known center p ∈ R

d in O
(
k( 1

εd + log n)
)

time for some constant ε > 0. B∗ con-
tains at least a point p ∈ Pc as it must contain every color. Furthermore, for any point p inside B∗ , B(p) can not have radius 
greater than 2r∗ . This guides us to take the minimum over balls B(p) for all p ∈ Pc . Since computing the approximation 
is faster, we compute the (1 + ε)-approximation of B(p) for all p ∈ Pc and then we take the minimum. These together 
can be done in O

(n
k × k( 1

εd + log n)
) = O

(
n( 1

εd + log n)
)

time. Therefore, we can compute a (2 + ε)-approximation of B∗

in O
(
n( 1

εd + log n)
)

time. Setting ε to 1 gives us a 3-approximation algorithm with the running time of O (n log n). The 
following theorem concludes the above.

Theorem 1. For a set P of n points in Rd where each point is colored with one of k colors, a 3-approximation of B∗ can be computed 
in O (n logn) time.

(1 + ε)-approximation. To present a (1 + ε)-approximation of B∗ for any constant ε > 0, we first use the above algorithm 
to compute the radius r ≤ 3r∗ . Then, we consider a grid Z over P and round all points of P to grid points in the following 
way. Each cell of the grid is incident to 2d grid points. For a point p ∈ P , we denote by g(p) the grid point incident 
to the cell containing p whose coordinates in any dimension are the lowest ones. We set the grid-cell side length of 

1 The standard 2-center problem is to compute two smallest disks of equal radii such that they cover all the given points in the plane together. It has 
been widely studied under L1, L∞ , L2 metrics—see the main results in [4,5,19].
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