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Seagrass beds comprise a uniquemarine ecosystem that acts as a biofilter inmarine environments and serves as a
spawning ground and nursery for various species of fish. Long-termmonitoring of seagrass beds is critical to un-
derstanding the dynamic relationships between the ecosystems and the stresses from natural systems and soci-
ety. This study investigated temporal changes of seagrass beds in Cam Ranh Bay (CRB), Vietnam using multi-
temporal Landsat data from 1996 to 2015. The data were processed through 5 main steps including: (1) image
preprocessing to convert Landsat data to the top of atmosphere reflectance (TOA) and to correct atmospheric ef-
fects, (2) water column correction to eliminate effects on remotely sensed data of aquatic environments,
(3) image classification using a linear mixed model, (4) accuracy assessment using the ground reference data,
and (5) change detection of seagrass beds. The classification results comparedwith the ground reference data in-
dicated that the overall accuracies and Kappa coefficients were higher than 91.7% and 0.8, respectively, in all
cases. From 1996 to 2015, the total area of seagrass beds had declined by approximately 25% (66 ha), mainly at-
tributed to coastal development and infrastructure construction.
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1. Introduction

Seagrasses are flowering plants commonly distributed in shallow
water along coastlines, estuaries, bays, and lagoons. They serve as direct
and indirect food for marine animals, including fish, dugong, and green
turtles (Dai, 2011; Duarte, 2002; Fortes, 1990; Heck et al., 2003; Short
et al., 2001). Seagrass beds provide the habitat for marine animals, sta-
bilize sediments, and prevent soil erosion (Cabaço et al., 2008; Dai,
2011; Dai et al., 1999; Fortes, 1990), and their leaves can act as a biofilter
by absorbing nutrients from coastal run-off (Spalding et al., 2014; Stapel
et al., 1996; Vonk et al., 2008). They can also store organic carbon at
levels two times higher than typical terrestrial forests per each km2

(Fourqurean et al., 2012). In recent years, the seagrass loss rate has
been increasing due to impacts of economic development, infrastruc-
ture, aquaculture farm constructions, urbanization, dredging, and tur-
bidity and eutrophication in many locations such as, in the Gulf of
Mexico, Indonesia, Philippines, Singapore, Thailand and Vietnam

(Duarte, 2002; Erftemeijer and Robin Lewis Iii, 2006; Green and Short,
2003; Vo et al., 2013; Walker, 1996; Walker and McComb, 1992). It is
thus necessary to monitor seagrass beds for environmental manage-
ment and conservation.

Indicators of seagrass distribution are critically important for moni-
toring coastal ecosystem health. The presence/absence and spatial dis-
tribution of seagrasses are commonly used ecological indicators
representing the status of seagrass ecosystems and the response to sur-
rounding environments at the landscape scale. These response patterns
or changesmay be intimately tied to anthropogenic impacts, such as eu-
trophication, land-use changes, coastal development, boating, dredging,
and agriculture. Cam Ranh Bay (CRB) is a region in Vietnam that has a
large meadow of seagrasses with a high diversity of species. Because
of aquaculture activities and socioeconomic development, however,
seagrasses in the region have been seriously degraded; approximately
20–30% of the total area of seagrass was lost between 1998 and 2002
(Dai et al., 2002). Studies indicated that Enhalus acoroides, a dominant
seagrass species usually flowering and fruiting during July to August, al-
most disappeared in this region because of anthropogenic activities (Dai
et al., 2002). Despite these observations, no formal ecological study of
seagrass monitoring has been conducted in the region. Thus,
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understanding the spatiotemporal changes of seagrasses is critical to
provide ecologists and economists in the regionwith information to im-
prove sustainable management strategies for marine ecosystems.

Mapping seagrass beds in the study region is traditionally imple-
mented through costly and time-consuming field surveys limited to
small areas in either shallow (b10m) or deeper (N10m)waters by snor-
keling or diving using 50 × 50 cm quadrat frames, cover sheets, and wa-
terproof cameras (Green et al., 1996, 2000; Komatsu et al., 2003a;
Komatsu et al., 2003b; Mumby et al., 1999; Sagawa et al., 2010). Remote
sensing technologies such as aerial photography and satellites have
been an indispensable tool for marine ecosystem monitoring, including
change detection of seagrasses, because they can acquire data over larger
regions.Mapping seagrass distributions by remote sensors could be influ-
enced by various contributions from the atmosphere, water column, and
sea bottom. Because the bottom signal is not always distinct, the signal re-
ceived by remote sensors may be compromised by bottom features that
appear as variations in the radiancedirected toward the sensor. For exam-
ple, seagrasses present in shallow waters with a light sandy bottom are
distinguished easily by remote sensing images (Andréfouët et al., 2001;
Andréfouët et al., 2003; Hochberg et al., 2003), yet a wide dynamic
range of colors are required to distinguish a dark silty bottom with
mixed seagrasses, mussel beds, and other covers types in deeper waters
(Botha et al., 2013; Lyzenga, 1981).

Images of turbid and deep water with other dark features such as
mussel beds, stones, or macroalgae are muchmore difficult to interpret
than clear and shallow water environments where seagrasses grow in
dense beds and constitute the only dark features on a sandy bottom
(Andréfouët et al., 2001; Andréfouët et al., 2003; Hochberg et al.,
2003). Low spatial resolution satellite images can be used only for mac-
roscalemapping to catalogue the presence and absence of seagrass beds
or coarsely assess the area distribution of seagrass beds (Ferguson and
Korfmacher, 1997; Pu et al., 2014;Wabnitz et al., 2008). Manymapping
methods use high spatial resolution satellite images to mapmacroalgae
and seagrasses in the intertidal regions at a scale of 2 to 20 m pixel size
to investigate the distribution of seagrass beds for change detection or
to estimate the biomass (Mumby and Edwards, 2002; Phinn et al.,
2008; Sagawa et al., 2010; Valle et al., 2015). The use of high spatial
and spectral resolutions of hyperspectral satellite images for seagrass
mapping usually produces results with wide coverage and are easily
georectified, enabling a photo-interpreter to differentiate between ob-
jects with colors that appear identical (Table 1).

Even high-resolution satellite images have several limitations:
(1) narrow coverage of spectral bands in hyperspectral remote sensing;
(2) limited temporal resolution; (3) high photographic distortion;
(4) low radiometric resolution; (5) cloud contamination (i.e., in optical
remote sensing); (6)mapping inaccuracies of seagrassmeadows caused
by the growth of epiphytes, seagrasses cover density, varying water
depth, and changing optical properties of overlying water driven by
seagrass die-back in anoxia and high temperature environment; (7) in-
terpretation difficulty in deep and turbid waters, especially in low light
or when water transparency is disturbed by high nutrient concentra-
tions; (8) highly variable sun-glint reflection from all directions in
image (i.e., especially in air-borne remote sensing); (9) errors due to
converting analogue air-borne photos to digital images, and (10) high
costs when high spatial and spectral resolutions are required (Mumby

et al., 1999). Nevertheless, multispectral Landsat data with 30m spatial
resolution are a good candidate for this monitoring purpose over a
multi-decadal scale because they are free of charge, and historic ar-
chives from Landsat TM to Landsat ETM+ and to Landsat OLI have
existed since the 1970s. Integration of these three satellite sensorswith-
out the need for extra bias corrections in the cross-sensor data merging
allows homogeneous multisensor image processing to support a long-
term seagrass monitoring mission.

Sophisticated feature extraction and content-based mapping are es-
sential to retrieving useful information in many circumstances, espe-
cially when interpretation becomes difficult in deep and turbid
waters, triggering formulation of additional semiempirical or empirical
feature extraction models. A number of methods have been developed
for feature extraction and for seagrass mapping, including principal
component analysis (PCA) (Ferguson and Korfmacher, 1997;
Pasqualini et al., 2005), normalized difference vegetation index
(NDVI) (Barillé et al., 2010), and leaf area index (LAI) combined with
additional in-situ optical data of water leaving radiance and attenuation
coefficient (Yang et al., 2011). These studies did not consider effects of
the water column, however, and ignoring this processing step could re-
duce the mapping accuracy by approximately 22% and 17% when using
an airborne hyperspectral imaging device such as Compact Airborne
Spectrographic Imager (CASI) and satellite data, respectively (Mumby
et al., 1998).

The depth invariant index (DII) (Lyzenga, 1981) and bottom reflec-
tance index (BRI) (Sagawa et al., 2010) are two commonly used water
column correction methods based on the bottom reflectance equation
that considers the reflectance through water decreasing exponentially
with an increase in water depth. The DII used to indicate sea bottom
typeswithout using bathymetry data is based on the unchanged charac-
teristic of the y-intercept value (i.e., invariant index) of relations be-
tween two visual bands associated with the water depth on the same
substrate (Lyzenga, 1981). The BRI uses bathymetry data of a substrate
to obtain attenuation coefficients from a reflectance function using ex-
ponential regression analysis; the coefficients are then used to obtain
the BRI, which is then used to indicate the bottom type (Sagawa et al.,
2010). The classification of seagrass beds using BRI could improve the
overall accuracy by 21–36% compared to DII (Sagawa et al., 2010;
Sagawa et al., 2012).

The main objective of this study was to investigate the potential use
of multi-temporal Landsat data with appropriate water column correc-
tions for seagrass mapping and conduct multi-temporal change detec-
tion of five key seagrass beds in CRB of Vietnam (i.e., five key study
regions) during the periods 1996–2001, 2001–2005, 2005–2010,
2010–2013, and 2013–2015. The case study allows us to determine if
the integrated Landsat data could support a holistic seagrass mapping
over the anticipated spatial and/or temporal time scales. To overcome
water column impact on reflectance, we used the BRI to remove the
water column effects followed by the linear mixed model (LMM) to
quantify the abundance fraction of seagrass beds in each pixel (Gokul
et al., 2014; Philpot, 1989; Schroeder et al., 2006). This type of multi-
temporal change detection may help answer the following questions:
1) which key study region suffered from the biggest net loss of the
seagrass bed over the five study periods; and 2) can the new seagrass
bed outweigh the loss of seagrass bed over the five study periods? The

Table 1
Accuracy consideration for mapping seagrass beds with satellite and air-borne sensors (Blakey et al., 2015; Lyons et al., 2012; Mumby et al., 1997; Pasqualini et al., 2005; Sagawa et al.,
2010; Wabnitz et al., 2008).

Type of images Landsat TM/ETM SPOT XS/5 CASI Aerial photography

Space-borne high resolution
multispectral images

Space-borne high resolution
multispectral images

Air-borne high resolution
hyperspectral images

Air-borne high resolution
multispectral images

Accuracy of the map (%) ≤88 ≤96 b90 ≤90
Coverage per scene (km) 185 × 185 60 × 60 Variable Variable
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