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Direct measurement of biotic indices used in monitoring stream health is time consuming, costly, and usually
limited to few sites and locations. This severely limits the spatial extent and the temporal interval of assessment;
hence, continuous long-termmonitoring of all reaches becomes impossible. Therefore, modeling approaches are
commonly used as an alternative. However, modeling complex natural systems are not without challenges and
the error inmodeling these systems is usually high. This study focuses on modeling four biotic indices, including
one fish and threemacroinvertebrate indices, using 171water quantity and 78water quality variables. This study
introduces a new two-phase approach inmodeling biotic indices. In thefirst phase, an initial estimate of the biotic
index along with an estimate of the error associated with those initial predictions is obtained. In the second
phase, these initial estimates are combined to develop a new predictive model. Although different modeling
methods can be used in each phase, to demonstrate the concept, in this study we tested Partial Least Square
Regression (PLSR) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The proposed approach was evaluated
based onmonitoring data form the Flint River watershed, located inMichigan, USA. The results demonstrate that
the two-phase approach that uses PLSR (first phase) and ANFIS (second phase) is superior to common-single-
phase approach (R2 for the stream health predictive models increased on average from 0.5 in the first phase to
over 0.9 in the second phase). Additionally, the two-phase approach eliminates the need for variable selection,
a common pre-processing step, and provides satisfactory results despite the limited number of samples, which
makes the approach more reliable, robust, and applicable. Although in this study the proposed two-phase
approach is applied to biotic indices, the process can be extended to other natural and physical systems.
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1. Introduction

A stream ecosystem is comprised of a community of biotic organ-
isms that interact with abiotic components of their environment in a
systematic way (Fisher and Likens, 1972; Angelier, 2003). Human activ-
ities, such as urbanization and agricultural practices, disrupt these

interactions and have negative impacts on stream ecosystems
(Vitousek et al., 1997; Chapagain and Hoekstra, 2008; Brander et al.,
2010). In order to monitor and evaluate anthropogenic impacts on
stream ecosystems, biotic indices were developed (Karr et al., 1986;
Kerans and Karr, 1994; Karr, 1999; Maddock, 1999). Biotic indices
based on species abundance, richness, and trophic composition are
commonly used for assessments of biological integrity (Herman and
Nejadhashemi, 2015). Studies show that fish andmacroinvertebrate in-
dices asmeasures of biological integrity provide a reliable assessment of
stream health/degradation (Brazner et al., 2007; Flinders et al., 2008;
Pelletier et al., 2012). Due to the limited mobility of macroinvertebrates
and their low tolerance to pollutants, macroinvertebrate indices are
sensitive to local degradation (Kerans and Karr, 1994; Compin and
Céréghino, 2003). On the other hand, fish indices are ideal for regional
and long-term impact assessment due to abundance and mobility of
fish within a stream network (Karr, 1981; Herman and Nejadhashemi,
2015).

Due to the cost of monitoring, biotic indices are only measured at a
few sites within a river basin and it is almost impossible to perform con-
tinuous long-term measurements for all reaches. Modeling approaches
such as empirical and linear regression are commonly used to fill this
data gap (Dodds et al., 2002; Van sickle et al., 2004; Wang et al., 2007;
Maret et al., 2010; Einheuser et al., 2012; Merriam et al., 2015).
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Abbreviations: ANFIS, Adaptive Network Fuzzy Inference System; DH17, average high
flow duration; DH21, 25th percentile of high flow duration; DH22, flood interval; DL16,
low flow pulse duration; EPT, abundance of three species (Ephemeroptera, Plecoptera,
and Trichoptera); FH2, variability in high pulse count; FH4, high flood pulse count; FIBI,
Family-level Index of Biological Integrity; FL1, low flood pulse count; gauss2mf, Gaussian
combination membership function; gaussmf, Gaussian curve membership function;
gbellmf, generalized bell-shaped member ship function; HBI, Hilsenhoff Biotic Index; IBI,
Index of Biotic Integrity; MA27, variability of flow values for month of April; MA34, vari-
ability of flow values for month of November; MA37, variability across monthly flows;
MA40, skewness in the monthly flows; MH9, mean maximum flows for September;
ML20, base flow; RA7, change of flow; PLSR, Partial Least Square Regression; RA8, number
of reversals; Sed12, mean sediment for month of January; TA3, seasonal predictability of
flooding; TH2, variability in Julian date of annual maxima; TH3, seasonal predictability of
non-flooding; TL1, Julian date of annual minimum; TN21, mean total nitrogen for month
of October; TN29, variability of total nitrogen for month of June; TP19, mean total phos-
phorus for month of August.
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However, linear models usually perform poorly in modeling most eco-
system responses to stressors (Scheffer et al., 2001; Johnson and Host,
2010); Using complex nonlinear methods, such as artificial neural net-
works (Céréghino et al., 2003; Park et al., 2004; Lencioni et al., 2007;
Mathon et al., 2013) or fuzzy logic (Einheuser et al., 2012, 2013a,
2013b;Woznicki et al., 2016) has becomemore favorable. Nevertheless,
in these types of models, the number of input variables should be limit-
ed (up to six variables) in order to reduce the number of fuzzy rules and
the required computational power and time (Chen and Mynett, 2003;
Sanikhani and Kisi, 2012; Woznicki et al., 2015).

While in general it is desirable to limit the number of input variables
due to the associated cost for data collection or modeling limitations, it
is important to include all significant variables in order to create a robust
model. Additionally, having too few measurements for the model
calibration, as is usually the case for macroinvertebrate and fish moni-
toring sites, imposesmore restrictions on the number of input variables.
As the number of input variables to the model increases, more data
points are needed for training phase of model development. One solu-
tion is to perform additional field measurements that are expensive,
time consuming, and in many cases cannot be accommodated due to
the budget restrictions. Therefore, this study aims to develop a predic-
tive stream health model that can use all the relevant variables, even
if the number of measured data is limited. The ultimate goal of this
paper is to introduce a new modeling approach that can be used in
establishing a predictive model that relates a set of input variables or
predictors to an output variable.

2. Materials & methods

In this study, the modeling process for estimating stream health in-
dices is illustrated in Fig. 1. The process started with setup, calibration,
and validation of a hydrologic model in order to estimate the stream
flow and water quality variables for all stream segments within the
study area. Next, the hydrologicmodel outputswere further parameter-
ized using the Hydrologic Index Tool (Kennen et al., 2009) to calculate
ecologically relevant variables that include 171 variables related to
water quantity and 78 variables related to water quality for every
stream segment within the study area. In the next step, variable

selection can be performed, if necessary, to identify the most relevant
variables. The generated variables are finally used to develop stream
health models for one fish and three macroinvertebrate indices. Stream
health models were developed using a two-phase approach. In the first
phase, biotic indices were estimated alongwith the associated errors. In
the second phase, these initial estimates (biotic indices and associated
errors) were used as inputs for development of final stream health
models.

2.1. Study area

The study area is the Flint River watershed (Hydrologic Unit Code
04080203) located in southeast Michigan, USA. The Flint River water-
shed has more than 3800 reach segments, while the Flint River is
one of the major tributaries of the Saginaw River Watershed (040802)
that drains to Lake Huron (Fig. 2). The Saginaw River Watershed
(including Flint) is identified as an area of concern by U.S. Environmen-
tal Protection Agency (EPA) due to polluted sediments and significant
loss of recreational values (EPA, 2015).

The total drainage area for the Flint Riverwatershed is 3445 km2 and
consists of 40% forest, 25% agriculture, 18% pasture, 16% urban, and 1%
water. The Flint River is an important food resource and spawning hab-
itat for fish and invertebrates (Flint River Watershed Coalition, 2007).
More than 300,000 people live in the watershed and use the Flint
River as a drinking water source (Flint River Watershed Coalition,
2007). In addition, theMichiganDepartment of Natural Resources iden-
tified the Flint River watershed as a priority site for water quality and
toxic waste load control (McIlroy et al., 1986).

2.2. Data collection

2.2.1. Physiographical data
The physiographical data including topography, landuse, and soil

characteristics were mainly used as inputs to the hydrologic model.
Topographic data was obtained from the USGS National Elevation
Dataset (NED) at a 30 m spatial resolution (NED, 2015). Land cover
data was obtained from the US Department of Agriculture
(USDA)—National Agricultural Statistics Services (NASS). This dataset

Fig. 1. Flow chart explaining the process how biotic indices are predicted using the proposed two-phase approach.
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