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Although parametric statistical methods have several advantages over ordination methods, understory plant
cover class data are traditionally more often analyzed with ordination techniques than with parametric ones.
Among the latter, only the cumulative logitmodel can take into account all the peculiarities of cover data: bound-
ed between 0 and 100%, asymmetric classes, high proportion of zeroes. However, results provided by the cumu-
lative logit model are difficult to interpret. We tested ten Bayesian models based on a zero-inflated cumulative
beta probability distribution which is bounded, can assume various shapes and accounts for zeroes. Some of
thesemodels alsomake results easier to interpret by allowing the user to directly estimate themean and variance
of data underlying cover class observations, much as in generalized linear models (GLMs). We applied our new
models and the cumulative logit model to real data, then compared their performance using the Deviance
Information Criterion (DIC) and sampled posterior p-values.
Four of the Bayesian beta models performed better (lower DIC), as well or rarely worse (depending on species)
than the cumulative logit model and showed an ease of interpretation similar to that of GLMs. They therefore
provide promising alternatives to existing parametric methods for modeling plant cover class data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Estimating plant abundance through visual assessment of cover is
widely used in ecology to compare communities at the species, life
form or functional group level. It is a fast and non-destructive method,
which requires far less time than other non-destructive methods such
as the pin-point method (Kent and Cocker, 1992; Levy and Madden,
1933) and less energy than harvesting and measuring biomass (Chen
et al., 2008). One of themost commonly usedmethods of plant cover vi-
sual estimation is based on the Braun-Blanquet scale (Braun-Blanquet,
1932). Eight abundance classes are distinguished: 0, r, +, 1, 2, 3, 4 and
5—respectively corresponding to absence of the species, negligible
cover, less than 0.1% cover, between 0.1 and 5% cover, between 5 and
25% cover, between 25 and 50% cover, between 50 and 75% cover, and
more than 75% cover (Braun-Blanquet, 1932). Braun-Blanquet's cover
data can provide plant cover estimates similar to those obtained with
the pin-point method (Damgaard, 2014).

In the literature, a whole range of statistical techniques have been
used to analyze Braun-Blanquet's cover data. Most studies rely on vari-
ous forms of ordination such as Correspondance Analysis and its
variations (Cilliers and Bredenkamp, 2000; Hardtle et al., 2005; Islebe
and Velazquez, 1994; Lepš and Hadincová, 1992; Peinado et al., 1998;
Pysek, 1994; Velazquez and Islebe, 1995; Wolf, 1993). There are many

fewer analyses of Braun-Blanquet cover data with parametric statistical
models (Chen et al., 2006; Eskelson et al., 2011; Van Couwenberghe
et al., 2013). This is because Braun-Blanquet data are complex in several
ways. First, Braun-Blanquet cover data form discrete ordered classes of
different sizes. Moreover, due to the way plant species are distributed,
the data will often include an important amount of zeroes, i.e. sites
where the species is observed as absent, either because of random ex-
tinction events, of the inability of the species to colonize the site
(Damgaard, 2009), or simply because the species was not detected.
Due to their complexity, cover data have often been replaced by pres-
ence–absence data in biodiversity studies, even though this process re-
sults in the loss of useful information (van der Maarel, 1979). The
classes on the Braun-Blanquet scale are also often transformed into
mean cover indices to facilitate the analysis of the data (van der
Maarel, 1979; Van Der Maarel, 2007). This transformation switches
the data from an ordinal to ametric scale. Furthermore, the transforma-
tion is arbitrary and introduces a distortion between classes (for exam-
ple, 2.5% will designate all percentages between 0.1 and 5%, whereas
87.5% will designate a much larger array of percentages, namely 75 to
100%) (Podani, 2006).

Even though they are complex, using parametric models rather than
ordination to analyze Braun-Blanquet data has several advantages. First,
modeling under complex conditions (heteroscedasticity, interdepen-
dent data) is more complicated when using non-parametric models
(Gosselin, 2011b; Laara, 2009). Second, parametric models provide the
magnitude of the effects and a level of uncertainty thus allowing
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comparisons between studies (Anderson et al., 2001; Richard, 2004;
Yoccoz, 1999), whereas non-parametric models provide only the prob-
ability of the significance of the effects (Harrell, 2001). Finally, even
though parametric models make assumptions about data distribution,
non-parametricmodels alsomake statistical assumptions (often assum-
ing independence, for example). If these statistical assumptions are not
valid, non-parametric models may turn out to be less robust than their
parametric counterparts (Johnson, 1995; McArdle and Anderson,
2004; Richard, 2004). To sumup, parametricmodels allow for confirma-
tory analysis (hypothesis testing) and estimation of the effects, whereas
ordination techniques are better suited for exploratory analysis
(hypotheses generation) (Gosselin and Gosselin, 2004; Richard, 2004).

The cumulative logit model (Liu and Agresti, 2005) can take into
account all the peculiarities of cover class data: bounded between 0
and 100%, asymmetric classes, high proportion of zeroes. However it
is rather difficult to interpret and has seldom been used in ecology
(cf Section 2.2.2). As an alternative, beta binomial and beta distributions
have already been used to model count based or continuous cover data
(Chen et al., 2006; Chen et al., 2008). To address the often high propor-
tion of zeroes in cover data, a zero-inflated beta distribution has also
been used by Damgaard (2009) and Damgaard (2013) to model differ-
ent kinds of cover data. The model consists in a dual process: first
modeling the number of zeroes, then modeling the rest of the data
with a beta distribution. These studies used a non-regression setting
to model cover data. Continuous cover data have also been modeled
with a beta distribution in a regression setting in response to ecological
variables (e.g. tree cover) (Eskelson et al., 2011). In this case, however,
datawere transformed so as to be in the] 0,1 [interval, therefore eluding
the need to use a zero-inflated model.

Our objective is to present a newmethod for modeling the response
of Braun-Blanquet data (or other ordered class data) to ecological vari-
ables that addresses the specificities of such vegetation data. This meth-
od is based on a probability distribution mixing a Dirac distribution on
zero and a cumulative beta distribution. It builds on the work of Chen
et al. (2006), Damgaard (2009), and Eskelson et al. (2011), but it intro-
duces the following novelties: (i) modeling the zero-inflation probabil-
ity as a function of the mean predicted cover, (ii) permitting the
estimation of the limits of the latent cover classes corresponding to
the Braun Blanquet classes, and (iii) proposing and testing different
model parameterizations. The originality of our approach is that we
modeled cover data in a regression setting, with several models of
zero-inflated beta distribution, while including an ecological compo-
nent in the statistical model to assess the response of specific cover to
dendrometric variables under different environmental conditions.

In the following, we start by presenting the zero-inflated cumulative
beta distribution and the referencemodel to which it will be compared:
the cumulative logit. These models are then applied on real data
through Bayesian methods and compared with DIC (Deviance Infor-
mation Criterion) and sampled posterior p-values—a goodness of fit
p-value (Gosselin, 2011a).

2. Material and methods

2.1. Data

The models were compared using the same data set as in Zilliox
and Gosselin (2014). The data were collected from 2006 to 2010 by
the French National Forest Inventory (NFI; cf. Morneau et al., 2008) on
plots dominated by Norway spruce and silver fir (Picea abies (L.) Karst
and Abies alba Mill.) in the Alps and the Jura regions. We excluded
data from winter measurements or when snow or frost covered the
soil (inappropriate conditions for floristic surveys) and data from
simplified plots (i.e. reduced-size plots for which the size reduction
was unknown). After data removal, 475 plots were left. For each plot,
the available data include floristic, dendrometric and environmental
measurements.

2.1.1. Floristic data
On each plot the NFI floristic data consists in the cover class of each

vascular plant species detected within a 15 m-radius disk (extended to
25 m-radius for tree species that include a treewith a diameter at breast
height greater than 7.5 cm). The cover data distinguished only 6 cover
classes: 0, 1, 2, 3, 4 and 5 (absence, less than 5%, between 5 and 25%, be-
tween 25 and 50%, between 50 and 75%,more than 75% cover).We used
only these classes in our models. We analyzed cover data only for the
seventeen most abundant species of the study area (Table 1). Most of
them presented a mean cover between 5 and 10% in plots of the study
area, with the notable exceptions of A. alba Mill. and P. abies (L.) Karst
(30 and 40% respectively). The distribution of cover classes was similar
for most species, with class 0 or class 1 being the most frequent class,
and class 5 being very rare. Again, A. alba Mill. and P. abies (L.) Karst
are exceptions, with class 4 being the most frequent for both species.

2.1.2. Environmental data
The meteorological data were obtained from MeteoFrance and in-

cluded monthly mean temperatures (abbreviated as T in the following
equations) and precipitation (ppt) for the 2005–2010 period. In addi-
tion to these climatic data, global solar radiation (solrad) was calculated

Table 1
Summary of the cover data of the seventeen most abundant species of the study area, including mean cover (calculated from class data, assigning to each class a cover value equal to the
mean value of the class)± SD, and empirical probability of each Braun Blanquet cover class from 0 to 5, corresponding respectively to absence, less than 5%, between 5 and 25%, between
25 and 50%, between 50 and 75%, and more than 75% cover.

Species name Species code Mean cover (%) P(Y = 0) P(Y = 1) P(Y = 2) P(Y = 3) P(Y = 4) P(Y = 5)

Abies alba Mill. abal 33.06 ± 30.47 0.18 0.17 0.15 0.13 0.26 0.10
Acer pseudoplatanus L. acps 4.64 ± 6.64 0.32 0.50 0.17 0.01 0.00 0.00
Ajuga reptans L. ajre 3.69 ± 6.38 0.48 0.37 0.14 0.01 0.00 0.00
Carex sylvatica Huds. casy 4.45 ± 7.86 0.52 0.30 0.16 0.02 0.00 0.00
Corylus avellana L. coav 8.44 ± 11.99 0.38 0.28 0.27 0.06 0.01 0.00
Dryopteris filix-mas (L.) Schott drfi 4.35 ± 6.94 0.41 0.42 0.16 0.01 0.00 0.00
Fagus sylvatica L. fasy 12.15 ± 15.07 0.29 0.25 0.31 0.11 0.03 0.00
Fraxinus excelsior L. frex 4.57 ± 8.9 0.50 0.33 0.14 0.02 0.01 0.00
Fragaria vesca L. frve 5.47 ± 8.4 0.36 0.42 0.19 0.02 0.00 0.00
Galium odoratum (L.) Scop gaod 6.27 ± 10.15 0.50 0.23 0.22 0.04 0.00 0.00
Oxalis acetosella L. oxac 9.05 ± 13.64 0.46 0.19 0.27 0.07 0.02 0.00
Picea abies (L.) Karst piab 41.90 ± 28.46 0.10 0.07 0.20 0.20 0.30 0.14
Rubus fruticosus L. rufr 9.37 ± 17.1 0.45 0.26 0.18 0.05 0.03 0.01
Rubus idaeus L. ruid 6.25 ± 9.54 0.37 0.38 0.20 0.04 0.00 0.00
Sorbus aria (L.) Crantz soar 2.95 ± 5.91 0.54 0.35 0.09 0.01 0.00 0.00
Sorbus aucuparia L. soau 6.15 ± 8.74 0.33 0.43 0.22 0.03 0.00 0.00
Vaccinium myrtillus L. vamy 10.32 ± 17.27 0.54 0.12 0.20 0.11 0.02 0.01
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