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The use of distance variables expressing the likelihood of species occurrence at a given site in relation to the
distance to observed species presence is demonstrated to improve species distribution models, especially
when combined with environmental variables which relate species occurrence to the environmental habitat
characteristics. In this study we developed models to predict the spatio-temporal distribution of Culicoides
imicola, which is the main transmission vector for the bluetongue virus in the Mediterranean region. We
investigated (i) the importance of the environmental habitat characterization by means of bioclimatic variables,
(ii) the effect of different distance variables tomodel the dispersal process, and (iii) the suitability of two different
parameter identification procedures to determine the distance variables for species distribution modeling.
Results showed that niche-based species distributionmodels, which only use environmental data, could estimate
the occurrence of Culicoides imicola accurately, given that environmental data of the period of high species abun-
dance (April until October) was included. The use of thesemodelsmay therefore be hampered for predictive risk
assessment aiming to estimate the probabilities and magnitude of undesired effects caused by the occurrence of
C. imicola. Species distribution models accounting for species dispersal in addition to the environmental habitat
characteristics, i.e. hybrid models, did provide accurate predictions of C. imicola distributions well before the
onset of the season of high species abundance. A Gaussian or negative exponential function of the distance to
presence locationswasmost suitable tomodel insect dispersal. The enhanced predictive capacity of thesemodels
potentially leads towards an increased model applicability in risk assessment and disease control.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Niche-based species distribution models (SDMs) determine the oc-
currence of a species based on its habitat requirements. The formulation
of a SDM is generally empirical, and based on geo-referenced species
occurrence data, presence only or absence–presence, that are projected
on environmental data layers. The backbone of an SDM is a formal
description of the relationship between the environmental site charac-
teristics (explanatory variables) and the species occurrence (dependent
variable). Several techniques have been applied to formalize this
relationship, among which generalized linear models (e.g. logistic
regression, Hosmer and Lemeshow (2000)), linear and non-linear
discriminant analysis (Rogers et al., 1996), tree-like classification algo-
rithms (e.g. CART, Breiman et al. (1984) and Random Forests, Breiman
(2001)), and maximum entropy models (e.g. MAXENT, Phillips et al.

(2006)) are the most popular (see Elith et al. (2006) for a comparison
of techniques). SDM calibration is performed on species distribution
records which reflect the environmental habitat suitability and the
species dispersal, colonization and survival processes that are involved
in the establishment of viable populations in these habitats. The range
of environments and biotic processes captured by the calibration data
depends on the species survey extent (Anderson and Martínez-Meyer,
2004), where more extensive surveys lead to a tighter representation
of the realized niche (sensu Hutchinson (1957)), and more accurate
model predictions of the actual species distribution. However, since
the biological processes involved in population establishment are gen-
erally not included explicitly as explanatory variables in SDMs, model
predictions are not restricted to the actual species distribution. Those
parts of the potential distribution that intersect the environmental
range of the calibration data will be qualified as suitable habitat as
well. Therefore, SDMsmay be used to model the potential geographical
extent of invasive species in novel landscapes (Peterson, 2003; Peterson
et al., 2003; Sutherst and Bourne, 2009) and to model changes in
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geographical species ranges under changing environmental conditions
(Berry et al., 2002; Engler et al., 2009; Pearson, 2006; Thomas et al., 2004).

The importance of spatial autocorrelation in the geographical distri-
bution of species has been demonstrated from ecological data
(Legendre and Fortin, 1989). Typically, species occurrence is positively
autocorrelated, such that the occurrence at nearby locations tends to
be more similar than would be expected by chance (Lichstein et al.,
2002). This pattern is often driven bymultiple causes that may be exog-
enous (e.g. autocorrelated environment or disturbance) and/or endoge-
nous (e.g. conspecific attraction, dispersal limitation, demography)
(Sokal and Oden (1978); Legendre (1993), cited in Lichstein et al.
(2002)). Methodologies have been proposed to incorporate spatial
autocorrelation in SDMs. Augustin et al. (1996) developed an auto-
logistic regression model as an extension of a logistic regression
model that includes a distance-weighted function derived from neigh-
borhood responses as an extra covariate. Other methods, including
spatialmodels based on eigenvectormapping (Dray et al., 2006), gener-
alized least square and autoregressivemodels, and generalized estimat-
ing equations (Liang and Zeger, 1986), are reviewed and compared by
Dormann et al. (2007) for species distribution mapping. Hengl et al.
(2009) combined spatial techniques with environmental factor analysis
(ENFA) to obtain spatial prediction maps of species occurrence.

Recent studies added distance variables, sometimes referred to as
dispersal or distance constraints (Václavík and Meentemeyer, 2009),
expressing the likelihood of a species' occurrence at a site in relation
to the distance of observed species presence (Allouche et al., 2008), as
explanatory variables, and showed an improved prediction accuracy
and ecological understanding of distribution models (Allouche et al.,
2008; Meentemeyer et al., 2008; Václavík and Meentemeyer, 2009).
These models are called hybrid models because they combine the
niche-based approach with additional distance variables. The use of
distance variables has the benefit of being suitable for presence-
only models. These variables are consequently often applied for distri-
bution modeling of invasive species (iSDM) in novel landscapes,
where its absence does not necessarily indicate unsuitable habitat
conditions but could also result from dispersal limitations (Václavík
and Meentemeyer, 2009). A similar approach is adopted to model the
spread of pathogens in epidemiological literature. Boender et al.
(2007) and Szmaragd et al. (2009) developed models for the transmis-
sion of avian influenza and bluetongue, respectively, including trans-
mission kernels to describe the spread of the virus. Mintiens et al.
(2003) used kernel estimation of the intensity of pig herds in a neigh-
borhood as a risk factor for the transmission of the CSF virus.

Niche-based and hybridmodels are increasingly applied in epidemi-
ological research, where they are frequently used to assess the spatial
spread of pathogen vectors. Distribution models based on Random
Forests have been shown to be highly suitable for these applications,
as they are less affected by false absences (i.e. catch failures) in the train-
ing data (Peters et al., 2011). In veterinary epidemiology, the transmis-
sion vector for the bluetongue virus (BTV), Culicoides imicola Kieffer
(Diptera: Ceratopogonidae), has thereby received substantial research
attention. In the Mediterranean basin, it is considered that the geo-
graphical distribution of C. imicola is constrained by bioclimate. Several
studies demonstrated the ability to predict its presence and/or abun-
dance based on bioclimatic information acquired from both meteoro-
logical stations and satellite imagery (e.g. Baylis et al., 2001; Calistri
et al., 2003; Calvete et al., 2008; Conte et al., 2007; Purse et al., 2004;
Tatem et al., 2003; Wittmann et al., 2001). The strong relationship be-
tween bio-climate and the geographical distribution of C. imicola result-
ed in a northward range expansion from source points in Northern
Africa during the last two decades linked to climate change (Mardulyn
et al., 2013). The Culicoides dispersal models developed by Ducheyne
et al. (2007) and Hendrickx et al. (2008) further analyzed the role of
wind in the dispersion pattern of different Culicoides species, including
C. imicola and indigenous European species (primarily the Culicoides
obsoletus complex and the Culicoides pulicaris complex). Prevailing

winds were linked to the medium/long-distance spread while short
range spreadwasmainly driven by active Culicoides flight. The dispersal
pattern is thus driven by different factors: longer distance (up to several
hundreds of kilometers) migratory movements are mediated by winds,
in contrast to the active short distance movements towards resources,
both up- and downwind. These dispersal mechanisms are explained in
Sellers (1992) and Reynolds et al. (2006).

The four research questions addressed in this study are:

1. Does the model performance change when the environmental habi-
tat characteristics are determined by environmental data covering
longer periods?;

2. Is the model performance improved when accounting for species
dispersal by empirical distance variables?;

3. What is the effect of the identification procedure to parameterize
these distance variables?; and

4. Which distance variable(s) is/are most appropriate to describe the
dispersal process of C. imicola?

2. Material and methods

2.1. Study site and species data collection

A year-round collection of Culicoides spp. in the period 2004–2008
was carried out on mainland Spain and the Balearic Islands under the
Spanish Bluetongue National Surveillance Programme (for details, see
Calvete et al. (2006)). Throughout this region, Culicoides spp. were
caught using 4 W ultraviolet light traps, fitted with a suction fan and a
collection vessel containing ethanol and ethylene glycol in water to
preserve the samples (miniature blacklight model 1212, J.W. Hock Co.,
Gainesville, FL, U.S.A.). The traps were installed outside selected farms
with a minimum of 10 large livestock animals, not further than 30 m
away from livestock. The coordinates of the sample locations were
recorded by a hand-held GPS receiver, and samples were taken during
one or two consecutive nights. Catches were analyzed on Culicoides
spp. abundance. For this study, however, we focused on C. imicola occur-
rence exclusively, and the abundance data were transformed into
absence–presence data (zero and non-zero catches). Given the high
seasonality in C. imicola activity and abundance (Miranda et al., 2004;
Ortega et al., 1998), the data set was further reduced by only selecting
data obtained between April and October, which is the period of maxi-
mal C. imicola activity and abundance. As such, a data set containing
C. imicola absence–presence records at 284 (year 2004), 382 (year
2005), 885 (year 2006), 151 (year 2007) and 71 (year 2008) farms
was compiled.

2.2. Environmental variables

The environmental characterization of the Culicoides sampling loca-
tionswas derived frommultispectral optical and thermal satellite imag-
ery from MODIS (http://modis.gsfc.nasa.gov) by means of the daytime
and nighttime land surface temperature (LSTday and LSTnight), and the
normalized difference vegetation index (NDVI) and enhanced vegeta-
tion index (EVI). The selection of these environmental variables is
based on their demonstrated influence on the geographical C. imicola
distribution (e.g. Baylis et al., 2001; Peters et al., 2011; Purse et al.,
2004, 2007; Tatem et al., 2003) and their availability throughout the
study period. The use of the highly correlated NDVI and EVI together
as independent variables is not problematic for the modeling technique
used in this study which is capable of dealing with highly correlated
features by its variable selection mechanism. We decided to use 8 day
and 16 day composite images, for LST and the vegetation indices
respectively, to reduce the impact of cloud cover. A temporal spline-
interpolation to a five-day temporal resolution resulted in 73 images
for each year of the five year long study period, that were subsequently
averaged to obtain monthly averages throughout the 5 year long study
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