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Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists
wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more
recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify
elements in the soundscape.
In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic
recordings. We work with data recorded under natural conditions and with all the attendant problems of unde-
fined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which canmask content of interest
(in our case, bird calls).
We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An
acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and
information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have
been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are
directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour
recording in descending order according to an “acoustic richness” score which is derived from a single index or
a weighted combination of two or more. We describe combinations of indices which lead to more efficient esti-
mates of species richness than random sampling from the same recording, where efficiency is defined as total
species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recog-
nized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling.
We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events
(such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of acoustic recordings is an increasingly important tech-
nique for ecologists wishing to monitor the terrestrial and aquatic envi-
ronments. Rapid advances in electronic hardware and computing
power nowmake it possible to leave unattended acoustic sensors in ex-
posed locations for several weeks of continuous recording. It is clearly
impossible for ecologists to listen to even a small fraction of this audio
data. Some degree of automated assistance is essential.

Recorded audio data can contribute to a number of ecological inves-
tigations,most obviously the identification of vocal animals. Bird species
in particular are regularly surveyed because of their importance as indi-
cator species of environmental health (Gregory and Strien, 2010). There

is now a considerable body of published work on the detection of bird
vocalizations (Acevedo et al., 2009; Agranat, 2009; Anderson et al.,
1996; Brandes, 2008; Chen and Maher, 2006; Digby et al., 2013; Juang
and Chen, 2007;McIlraith and Card, 1997; Somervuo et al., 2006). How-
ever vocal frog and insect species are also of interest (Brandes et al.,
2006) and, in the Australian context, the koala (Phascolarctos cinereus,
Ellis et al., 2010, 2011) and the cane toad (Bufo marinus, Hu et al.,
2010) have received particular attention.

In contrast to the bioacoustic interest in individual species, there is a
growing interest in soundscape ecology, that is, the study of the temporal
and spatial distribution of sound through a landscape, reflecting impor-
tant ecosystem processes and human activities (Kasten et al., 2012;
Pijanowski et al., 2011a, 2011b). From this perspective, the soundscape
is a finite resource in which organisms (including humans) compete for
spectral space (Krause, 2008).

Although this work does not depend on the theoretical perspective
of soundscape ecology, it does address the ecological problem of esti-
mating species richness using acoustic recordings. In theory it might
be possible to automate this task by preparing individual recognizers
for the expected vocal species (which could number 100 or more) but
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the preparation of call recognizers is not an easy task. Lack of suitable
training data can be a significant constraint and, even if a recognizer is
successfully trained for one species in one locality, the natural geo-
graphic variation of calls may render it less effective in a new locality.
Our research group has previously addressed the problem of recognizing
vocal species by steering a middle path between “one-recognizer-fits-
all-species” and “one-recognizer-for-each-species”. The former strategy
can sacrifice accuracy for generality but the latter is cumbersome anddif-
ficult tomaintain.We have built a number of recognizers for generic fea-
tures shared by many bird calls (Towsey et al., 2012).

This paper investigates the problem of determining species richness
by approaching it as a problemof computer assisted sampling from long
duration audio recordings. We illustrate our approach by focusing on
bird species. The traditional method to determine avian richness at
a specific location is the point count — one or more appropriately
skilled persons count all species heard and/or seen within a specified
area over a fixed period of time. Clearly this is a time consuming task
where sampling effort is constrained by cost. A typical protocol is to
visit a site for 20 min each atmorning, noon and dusk over several days
(Wimmer et al., 2013) but many other protocols are in use (Bibby et al.,
1992).

Automated and semi-automated methods offer the advantage that
recording devices can be deployed in thefield for days orweeks obviating
the need for regular field visits by a trained ecologist. However, the use of
acoustic recordings to determine avian species richness is a relatively
new technology and there are few well-established protocols or even
comparisons of automated methods with traditional (Acevedo and
Villanueva-Rivera, 2006). Our research group is investigating protocols
for the use of environmental recordings (Digby et al., 2013; Wimmer
et al., 2010, 2013). Wimmer et al. (2013) have compared a number of
acoustic sampling protocols and demonstrated that they can be signifi-
cantly more efficient than traditional point counts, where efficiency is
defined as the number of species identified for equivalent listening
effort. They also found that an effective sampling strategy is to select
one minute audio samples at random from the 3 h after civil-dawn
which encompasses themorning choruswhenmost birds aremost like-
ly to sing.

In this paperwe investigate the use of a variety of acoustic indices to
direct sampling from recordings of the environment. An acoustic index
is a statistic that summarizes some aspect of the distribution of acoustic
energy and information in a recording. We present one minute sound
segments to a person skilled in bird identification, in an order ranked
by indices that describe the acoustic content of the segments. Success
is achieved if an estimate of avian species richness is obtained more ef-
ficiently (number of species identified for a given listening effort) than
using either traditional on-site point-counts or random sampling from
the recordings.

There is a growing body of work on the ecological uses of acoustic
indices. It is convenient to divide the indices into three categories:
waveform indices, spectral indices and second order indices. Waveform
indices include traditional measures such as signal amplitude and
signal-to-noise ratio. More recently, temporal entropy (H[t]) was intro-
duced to characterize the temporal dispersal of acoustic energywithin a
recording (Sueur et al., 2008).

Spectral indices include spectral entropy (H[s]), a measure of acous-
tic energy dispersal through the spectrum (Sueur et al., 2008), and spec-
tral peak count (NP), a measure of the average number of peaks in the
spectra of the frames through a recording (Gasc et al., 2013). NP was
shown to reflect acoustic activity as determined by ear. Pieretti et al.
(2011) have introduced the acoustic complexity index (ACI), which is a
measure of the average absolute fractional change in signal amplitude
from one frame to the next through a recording.

The above indices show varying degrees of correlation with bio-
acoustic activity. To obtain better correlations, a number of second
order indices have been proposed. Sueur et al. (2008) demonstrated
that H[t] ∗ H[s] is weakly correlated with “acoustic heterogeneity”,

and that an acoustic dissimilarity index, Df, between two spectra S1
and S2, where:

D f ¼ Σ f S1 fð Þ–S2 fð Þj j=2;

correlates with differences in “acoustic heterogeneity” between
recordings.

A convenient property of H[t], H[s] and ACI is that their values are
naturally normalized in [0, 1] and can therefore be used to compare
recordings of quite different content and amplitude. It is possible to
combine non-normalized indices, such as amplitude, by first converting
them to a ranked index. For example, Depraetere et al. (2012) calculate
the index Acoustic Richness (AR) given by:

AR ¼ rank H t½ �ð Þ � rank Mð Þð Þð Þ=n2
; with 0 ≤AR ≤1;

which combines H[t] and M (median of the recording's amplitude
envelope) by combining their ranks rather than their values. AR corre-
lates with avian species richness.

Working on the assumption that acoustic activity in the 1–2 kHz and
2–11 kHz bands is likely to be technophony (sound due to machine
sources) and biophony (sound due to animal sources) respectively,
Joo et al. (2011) have proposed an acoustic health quality index (AHQI),
more recently called the normalized difference soundscape index (NDSI):

NDSI ¼ biophony – technophonyð Þ = biophonyþ technophonyð Þ;

where biophony and technophony are the summed power spectral
densities (PSD) in the appropriate bands (McLaren, 2012).

In this work we investigate the hypothesis that combinations of indi-
ces will be more useful than single indices to characterize the acoustic
content of one minute recordings. Our hypothesis is that a single
index cannot capture all that is acoustically relevant in a recording.
For example, H[t] is not sensitive to frequency content and none of
H[t], H[s], NP and ACI is sensitive to signal amplitude since their calcula-
tion ‘normalizes’ amplitude information. We apply combinations of
acoustic indices to two tasks: 1. the efficient estimation of avian species
richness and; 2. the detection of common acoustic “regimes” in
Australian sub-tropical environmental recordings, namely rain and cicada
choruses. A particular feature of our work is that we directly analyze real
field-data recorded under normal environmental conditions and with all
the attendant problems of unconstrained andundefined acoustic content.
In particular, we do not remove audio segments containingwind and rain
“noise” prior to analysis.

In this context, the issue of what constitutes “noise” in recordings of
the environment requires some clarification. In a non-technical sense,
“noise” is a sound where it is not wanted (adopting the classical defini-
tion of a weed). Because our focus is bird vocalizations, geophony
(sounds due to wind, rain, leaf rustle, etc.), anthrophony (sounds due
to human sources, traffic etc.) and biophony (sounds due to other
animal vocalizations) can be considered noise. However in this study,
we use the term “noise” in a technical sense tomean that acoustic energy
which remains constant through the duration of a one-minute audio
segment regardless of its source. Thus it is possible that the same acous-
tic sourcemay contribute to both “noise” and “signal”. For example, if we
assume that crickets are evenly distributed in the landscape around a
sensor, there will be a background “murmur” of crickets but the chirps
of those crickets closest to themicrophonewill register as specific acous-
tic events within the background. Likewise, wind gusts will stand out as
specific acoustic events within the constant noise generated by a back-
ground of moving air.
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