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This paper investigates image processing and pattern recognition techniques to estimate atmospheric visibility
based on the visual content of images fromoff-the-shelf cameras.We propose a predictionmodel thatfirst relates
image contrast measured through standard image processing techniques to atmospheric transmission. This is
then related to themost commonmeasure of atmospheric visibility, the coefficient of light extinction. The regres-
sionmodel is learned using a training set of images and corresponding light extinction values asmeasured using a
transmissometer.
The major contributions of this paper are twofold. First, we propose two predictive models that incorporate
multiple scene regions into the estimation: regression trees and multivariate linear regression. Incorporating
multiple regions is important since regions at different distances are effective for estimating light extinction
under different visibility regimes. The second major contribution is a semi-supervised learning framework,
which incorporates unlabeled training samples to improve the learned models. Leveraging unlabeled data for
learning is important since in many applications, it is easier to obtain observations than to label them. We
evaluate our models using a dataset of images and ground truth light extinction values from a visibility camera
system in Phoenix, Arizona.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Atmospheric visibility can be a useful indicator of atmospheric pollu-
tion resulting from suspended particulates especially in drier climates.
This coupled with the rapidly growing number of cameras in our eco-
system motivates image-based visibility estimation as an appealing
complement to traditional means of monitoring air pollution since spe-
cialized equipment for measuring pollution is comparatively expensive.
So-called visibility camera systems are already seeing widespread de-
ployment. For example, the Interagency Monitoring of Protected Visual
Environments (IMPROVE)1 program has installed and maintains cam-
eras in over two dozen national parks in the United States. In addition,
regional air quality agencies2 have deployed visibility camera systems
in over 30 cities. More broadly, though, there are potentially tens of
thousands of web, surveillance, traffic, and other cameras, which could
be used to monitor atmospheric visibility and thus air pollution.

The work in this paper represents a step towards using multimedia
data, in particular images from off-the-shelf cameras, to perform quanti-
tative estimation of atmospheric visibility. We investigate image pro-
cessing and pattern recognition techniques to derive prediction models
of light extinction based on image content. Light extinction captures

the joint effects of light scattering and absorption that result frompartic-
ulates in the atmosphere.

Our major contributions are twofold. First, we demonstrate that
models which incorporate scene regions located at different distances
from the camera are more effective than models which incorporate
only a single region. This result is due to the fact that far regions are
not useful when visibility is relatively poor since they are not observable
at all, and close regions are not useful when visibility is relatively good
since there is not enough intervening atmosphere to reduce visual acu-
ity by a measurable amount. Our second major contribution is a semi-
supervised learning framework which incorporates unlabeled training
samples to improve the learned models. Leveraging unlabeled data for
learning is important since, in many applications, it is easier to obtain
observations than to label them.

The rest of the paper is organized as follow. First, Section 2 discusses
relatedwork. The problem is formally defined in Section 3. Section 4 de-
scribes the general framework of our approach and Section 5 describes
the evaluation dataset and methodology. Sections 6 and 7 describe the
proposed methods for incorporating multiple image regions and incor-
porating unlabeled observations, including the experimental results.
Section 8 concludes the paper.

2. Related work

There is a sizable body of work on the related problem of improving
the fidelity of images taken under hazy or otherwise atmospherically
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degraded conditions. This includes work by Narasimhan and Nayar on
using physics-based models to improve a single image (Narasimhan &
Nayar, 2003b, 2003c) and using multiple images of the same scene
but under different conditions (Narasimhan & Nayar, 2001, 2002,
2003a); work by Schechner and colleagues on using polarization to im-
prove one or more images (Namer & Schechner, 2005; Namer et al.,
2009; Schechner et al., 2001, 2003; Shwartz et al., 2006); and work by
(He et al., 2009) on using a dark channel prior to dehaze a single
image. The objective of this paper, however, is to derive quantitative es-
timates of atmospheric visibility and so these works are not directly
applicable.

There is a much smaller body of work on using images to measure
atmospheric visibility. (Caimi et al., 2004) review the theoretical foun-
dations of visibility estimation using image features such as contrast,
and describe a Digital Camera Visibility Sensor system, but they do not
apply their technique to real data. (Kim & Kim, 2005) investigate the
correlation between hue, saturation, and intensity, and visual range in
traditional slide photographs. They conclude that atmospheric haze
does not significantly affect the hue of the sky but strongly affects the
saturation of the sky, but they do not use the image features to estimate
visibility. (Baumer et al., 2008) use an image gradient based approach to
estimate visual range using digital cameras but their technique requires
the detection of a large number of targets, some only a fewpixels in size.
This detection step is sensitive to parameter settings and is not robust to
camera movement. Also, for ranges over 10 km, they only compare
their estimates to human observations, which have limited accuracy.
(Luo et al., 2005) use Fourier analysis aswell as the image gradient to es-
timate visibility but they also only compare their estimates to human
observations. (Raina et al., 2004) do compare their estimates to mea-
surements taken using a transmissometer-like device but their ap-
proach requires the manual extraction of visual targets. The work by
(Molenar et al., 2004) is closest to the proposed technique in that it is
fully automated and the results are compared to transmissometer read-
ings. However, their technique uses a single distant and thus small
mountain peak to estimate contrast and thus is very sensitive to camera
movement and is unlikely to perform well under varying visibility
regimes.

In contrast to theworks above, our approach is fully automated, does
not rely on the detection and segmentation of small targets, is robust to
modest camera movement, and performs favorably when compared to
ground truth measurements acquired using specialized equipment.

In our previouswork (Graves &Newsam, 2011), we compared differ-
entmethods for computing image contrast as the basis for estimating vis-
ibility.We considered Sobelfilters in the spatial domain, low-, band-, and
high-pass filters in the frequency domain, and an image haze model
based on the so-called dark channel prior (He et al., 2009).We concluded
that Sobel filters worked best. This paper extends that work in two fun-
damental ways: 1) we consider multiple image regions using regression
trees aswell asmultivariate linear regression (this was introduced in our
earlier workshop paper (Graves & Newsam, 2012)); and 2) we investi-
gate semi-supervised learning to incorporate unlabeled observations.

3. The problem

Our goal is to estimate visibility from a static image. Reduced vis-
ibility by the intervening atmosphere is mainly due to three factors:
1) light radiating from the scene is absorbed before it reaches an
observer; 2) light radiating from the scene is scattered out of the vi-
sual pathway of an observer; and 3) ambient light is scattered into
the visual pathway of an observer. The combined effect of the ab-
sorption and scattering is referred to as the total light extinction.
The higher the light extinction, the poorer the visibility.

Light extinction is typicallymeasured using a transmissometer (Betts,
1971; Lee et al., 1982). This device consists of a light source (transmitter)
and light detector (receiver), generally separated by a distance of several
kilometers, and assesses visibility impairment bymeasuring the amount

of light lost over this known distance. The transmitter emits a uniform
light beam of known constant intensity. The receiver separates this
light from ambient light, computes the amount of light lost, and reports
the extinction coefficient bext, which is commonly measured in units of
inverse megameters (1 Mm−1 = 1.0 × 10−6 m−1).

Our goal is to measure bext using a camera instead of a transmissom-
eter. We do this by noting that bext is inversely related to atmospheric
transmission t through the exponential equation (Seinfeld & Pandis,
2006)

t ¼ exp−bextr ð1Þ

where r is the distance of the scene. Further, atmospheric transmission t
can be related to the observed image I through (Fattal, 2008; He et al.,
2009; Narasimhan & Nayar, 2000, 2002; Tan, 2008)

I ¼ J t þ A 1−tð Þ ð2Þ

where J is the scene radiance and A is the ambient (atmospheric) light.
The first term on the right side of this equation is inversely related to the
amount of light radiating from the scene that is scattered out of the vi-
sual pathway and thus increases with improved transmission. The sec-
ond term is the amount of ambient light typically from the sun that is
scattered into the visual pathway and thus decreases with improved
transmission. In the extremes, the perceived image can either be just
the scene radiance, i.e., no atmospheric interference, or just the
scattered ambient light.

Intuitively, reduced visibility results in an image with less detail es-
pecially in the distance. This reduced acuity is caused by two factors:
the objects and their backgrounds become more similar due to in-
creased attenuation and scattering; and the atmosphere acts as a low-
pass filter (Krishnakumar & Venkatakrishnan, 1997), suppressing the
higher-frequency image components or details. We use the term local
contrast to refer to image acuity and define it as themagnitude of differ-
ence in image intensity over a short spatial distance C = |∇I| where the
gradient is with respect to the two-dimensional image space. The same
spatial difference can be computed on the right side of Eq. (2) to get

∇Ij ¼ j∇ J t þ A 1−tð Þð Þj j ð3Þ

¼ j∇Jtj ð4Þ

¼ tj∇ Jj: ð5Þ

Line 4 results from the assumption that the ambient light A is locally
constant and line 5 results from the positivity of transmission t and the
assumption that it is locally constant as well. The quantity |∇J| is the
“true” contrast of the scene when imaged under perfect transmission;
i.e. when there is no intervening atmosphere to reduce visibility. This
equation shows that transmission has the intuitive interpretation as
the ratio of the observed contrast to the true contrast.

We use Sobel filters to estimate the image gradient at each pixel. To
compensate for slight camera movement and other sources of image
noise, we compute image contrast C as the average of the gradient mag-
nitude over an image region Ω:

C ¼ 1
Ωj j

X
Ω

j∇Ij: ð6Þ

Finally, putting it all together, we can relate the quantity we are try-
ing to estimate, the coefficient of extinction bext, to what we measure
from the image, contrast C (or, more precisely, the log of the contrast)
through the linear relation:

bext ¼
lnC
r

− lnj∇ Jj
r

: ð7Þ
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