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We present improved upper and lower bounds on the spanning ratio of θ-graphs with at 
least six cones. Given a set of points in the plane, a θ-graph partitions the plane around 
each vertex u into m disjoint cones, each having aperture θ = 2π/m, and adds an edge in 
each cone to the vertex whose projection onto the bisector of that cone is closest to u. 
We show that for any integer k ≥ 1, θ-graphs with 4k + 2 cones have a spanning ratio of 
1 + 2 sin(θ/2) and we provide a matching lower bound, showing that this spanning ratio is 
tight.
Next, we show that for any integer k ≥ 1, θ-graphs with 4k + 4 cones have spanning ratio 
at most 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We also show that θ-graphs with 4k + 3
and 4k + 5 cones have spanning ratio at most cos(θ/4)/(cos(θ/2) − sin(3θ/4)). This is a 
significant improvement on all families of θ-graphs for which exact bounds are not known. 
For example, the spanning ratio of the θ-graph with 7 cones is decreased from at most 
7.5625 to at most 3.5132. These spanning proofs also imply improved upper bounds on 
the competitiveness of the θ-routing algorithm. In particular, we show that the θ-routing 
algorithm is (1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)))-competitive on θ-graphs with 4k + 4
cones and that this ratio is tight.
Finally, we present improved lower bounds on the spanning ratio of these graphs. Using 
these bounds, we provide a partial order on these families of θ-graphs. In particular, 
we show that θ-graphs with 4k + 4 cones have spanning ratio at least 1 + 2 tan(θ/2) +
2 tan2(θ/2), where θ is 2π/(4k + 4). This is surprising since, for equal values of k, the 
spanning ratio of θ-graphs with 4k + 4 cones is greater than that of θ-graphs with 4k + 2
cones, showing that increasing the number of cones can make the spanning ratio worse.
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1. Introduction

A geometric graph G is a graph whose vertices are points in the plane and whose edges are line segments between pairs 
of points. A geometric graph G is called plane if no two edges intersect properly, i.e. any two edges can only intersect at 
their endpoints. Every edge is weighted by the Euclidean distance between its endpoints. The distance between two vertices 
u and v in G , denoted by δG (u, v), or simply δ(u, v) when G is clear from the context, is defined as the sum of the weights 
of the edges along the shortest path between u and v in G . A subgraph H of G is a t-spanner of G (for t ≥ 1) if for each 
pair of vertices u and v , δH (u, v) ≤ t · δG(u, v). The smallest value t for which H is a t-spanner is the spanning ratio or 
stretch factor of H . The graph G is referred to as the underlying graph of H . The spanning properties of various geometric 
graphs have been studied extensively in the literature (see [3,4] for a comprehensive overview of the topic).

This paper, and most of the literature, is concerned with the spanning ratio of classes (or families) of geometric graphs. 
The spanning ratio of a class of graphs is the supremum over the spanning ratios of all members of that graph class. 
Throughout the paper, we abuse terminology slightly by making statements such as “the spanning ratio of the θ(4k+x)-graph 
is at most (. . . )” when we refer to the spanning ratio of the family of θ(4k+x)-graphs. Similarly, we say that “the spanning 
ratio of the θ(4k+x)-graph is at least (. . . )”, by which we mean that there exists a member of the family of θ(4k+x)-graphs 
whose spanning ratio is at least that.

Given a spanner, it is important to be able to route, i.e. find a short path, between any two vertices. A routing algorithm 
is said to be c-competitive with respect to G if the length of the path returned by the routing algorithm is not more than 
c times the length of the shortest path in G [5]. The smallest value c for which a routing algorithm is c-competitive with 
respect to G is the routing ratio of that routing algorithm.

In this paper, we consider the situation where the underlying graph G is a straightline embedding of the complete graph 
on a set of n points in the plane with the weight of an edge (u, v) being the Euclidean distance |uv| between u and v . 
A spanner of such a graph is called a geometric spanner. We look at a specific type of geometric spanner: θ -graphs.

Introduced independently by Clarkson [6] and Keil [7], θ -graphs are constructed as follows (a more precise definition 
follows in Section 2): for each vertex u, we partition the plane into m disjoint cones with apex u, each having aperture 
θ = 2π/m. When m cones are used, we denote the resulting θ -graph by the θm-graph. The θ -graph is constructed by, for 
each cone with apex u, connecting u to the vertex v whose projection onto the bisector of the cone is closest. Ruppert and 
Seidel [8] showed that the spanning ratio of these graphs is at most 1/(1 − 2 sin(θ/2)), when θ < π/3, i.e. there are at least 
seven cones. This proof also showed that the θ -routing algorithm (defined in Section 2) is 1/(1 − 2 sin(θ/2))-competitive on 
these graphs.

Recently, Bonichon et al. [9] showed that the θ6-graph has spanning ratio 2. This was done by dividing the cones into 
two sets, positive and negative cones, such that each positive cone is adjacent to two negative cones and vice versa. It 
was shown that when edges are added only in the positive cones, in which case the graph is called the half-θ6-graph, the 
resulting graph is equivalent to the Delaunay triangulation where the empty region is an equilateral triangle. The spanning 
ratio of this graph is 2, as shown by Chew [10]. An alternative, inductive proof of the spanning ratio of the half-θ6-graph 
was presented by Bose et al. [5], along with an optimal local competitive routing algorithm on the half-θ6-graph.

It was also shown that the θ5-graph is a spanner with spanning ratio at most 
√

50 + 22
√

5 ≈ 9.960 [11] and the θ4-graph 
is a spanner with spanning ratio at most (1 + √

2) · (
√

2 + 36) ·
√

4 + 2
√

2 ≈ 237 [12]. Constructions similar to those for 
Yao-graphs [13] show that θ -graphs with fewer than 4 cones are not spanners. In fact, until recently it was not known that 
the θ3-graph is connected [14].

Tight bounds on spanning ratios are notoriously hard to obtain. The standard Delaunay triangulation (where the empty 
region is a circle) is a good example. Its spanning ratio has been studied for over 20 years and the upper and lower bounds 
still do not match. Also, even though it was introduced about 25 years ago, the spanning ratio of the θ6-graph has only 
recently been shown to be finite and tight, making it the first and, until now, only θ -graph for which tight bounds are 
known.

In this paper, we improve on the existing upper bounds on the spanning ratio of all θ -graphs with at least six cones. 
First, we generalize the spanning proof of the half-θ6-graph given by Bose et al. [5] to a large family of θ -graphs: the 
θ(4k+2)-graph, where k ≥ 1 is an integer. We show that the θ(4k+2)-graph has a tight spanning ratio of 1 + 2 sin(θ/2).

We continue by looking at upper bounds on the spanning ratio of the other three families of θ -graphs: the θ(4k+3)-graph, 
the θ(4k+4)-graph, and the θ(4k+5)-graph, where k is an integer and at least 1. We use 4k + 4 and 4k + 5 in order to ensure 
that all bounds hold starting from k = 1, i.e. when there are at least 6 cones, the smallest value for which our inductive 
arguments work. We show that the θ(4k+4)-graph has a spanning ratio of at most 1 + 2 sin(θ/2)/(cos(θ/2) − sin(θ/2)). We 
also show that the θ(4k+3)-graph and the θ(4k+5)-graph have spanning ratio at most cos(θ/4)/(cos(θ/2) − sin(3θ/4)). As was 
the case for Ruppert and Seidel, the structure of these spanning proofs implies that the upper bounds also apply to the 
competitiveness of θ -routing on these graphs. These results are summarized in Table 1.

Finally, we present improved lower bounds on the spanning ratio of these graphs and we provide a partial order on these 
families. In particular, we show that θ -graphs with 4k + 4 cones have spanning ratio at least 1 + 2 tan(θ/2) + 2 tan2(θ/2). 
This is surprising since, for equal values of k, the spanning ratio of θ -graphs with 4k + 4 cones is greater than that of 
θ -graphs with 4k + 2 cones, showing that increasing the number of cones can make the spanning ratio worse.

This paper is organized as follows. Section 2 precisely defines θ -graphs and introduces relevant notation. The proof of 
the new upper bounds on the spanning ratio begins in Section 3 with several key lemmas (in particular Lemmas 3 and 4). 
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