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The integration of Bayesian inference techniques with mathematical modeling offers a promising means to im-
prove ecological forecasts and management actions over space and time, while accounting for the uncertainty
underlying model predictions. In this study, we address two important questions related to the ramifications
of the statistical assumptions typically made about the model structural error and the prospect of Bayesian cali-
bration to guide the optimization ofmodel complexity. Regarding the former issue,we examine statistical formu-
lations that whether postulate conditional independence or explicitly accommodate the covariance among the
error terms for various model endpoints. Our analysis evaluates the differences in the posterior parameter pat-
terns and predictive performance of a limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (par-
ticulate phosphorus) model calibrated with three alternative statistical configurations. The lessons learned from
this exercise are combinedwith those from a second comparative analysis that aims to optimizemodel structure.
In particular, we selected three formulas of the zooplankton mortality term (linear, hyperbolic, sigmoidal) and
examine their capacity to determine the posterior parameterization as well as the reproduction of the observed
ecosystem patterns. Our analysis suggests that the statistical characterization of the model error as well as the
mathematical representation of specific ecological processes can be influential to the inference drawn by a
modeling exercise. Our findings could be useful when selecting the most suitable statistical framework for
model calibration and/ormaking informative decisions aboutmodel structure optimization. In the absence of ad-
equate prior knowledge, we also advocate the use of Bayesian model averaging for obtaining weighted averages
of the forecasts from different model structures and/or statistical descriptions of the process error terms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The rigorous analysis of decision problems in eutrophication man-
agement requires fundamental understanding of the biogeochemical
cycles; specification of objective functions for evaluating alternative
management strategies; predictive models of ecosystem dynamics
formulated in terms of variables relevant to management objectives; a
finite set of alternative management plans, including any limitations
on their use; and a monitoring program to follow system response to
restoration actions (Arhonditsis et al., 2011). An inherently difficult
task in practical applications of decision theory is the impartial charac-
terization of an objective function, which specifies the value of alterna-
tive management actions and usually accounts for benefits, costs, and
conditional constraints (Dorazio and Johnson, 2003). Likewise, the pre-
dictive models aim to realistically reproduce the relevant behaviors of
aquatic ecosystems that are nonlinear, complex, and are characterized
by spatial, temporal, and organizational heterogeneity (Arhonditsis
and Brett, 2004). Perhaps even greater challenges are posed by the un-
certainty in predictions ofmanagement outcomes. This uncertaintymay

stem from inadequate control of management actions, incomplete
knowledge of system behavior, errors in measurement and sampling
of aquatic ecosystems, natural variability, and model structural or para-
metric uncertainty (Arhonditsis et al., 2007; Borsuk et al., 2004;Walters
and Holling, 1990). Failure to recognize and account for these sources of
uncertainty can severely compromise management performance, and
in some cases, has led to catastrophic environmental and economic
losses (Williams et al., 1996; Walters, 1986). However, the general
lack of uncertainty estimates for most eutrophication models, the arbi-
trary selection of higher – and often unattainable – threshold values
for water quality standards as a hedge against unknown forecast errors,
riskymodel-basedmanagement decisions and unanticipated system re-
sponses are still the typical management practice (Arhonditsis, 2009;
Arhonditsis et al., 2007; 2008a,b).

Given this ominous context, there has been a growing interest in the
theory of stochastic decision processes and the development of practical
methods that can explicitly accommodate the uncertainty in the re-
sponse of environmental systems to both controlled and uncontrolled
factors (Dorazio and Johnson, 2003). In this regard, particular emphasis
has been placed on the implementation of Bayesian inference methods
that enable the explicit consideration of model uncertainty, can be en-
gaged with the policy practice of adaptive management, and have the
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ability to update and improve model predictions and management ac-
tions in space and time (Kennedy and O'Hagan, 2001; Zhang and
Arhonditsis, 2008). The Bayesian inference is consistent with the scien-
tific process of progressive learning and offers a natural mechanism for
sequentially updating beliefs (specified in terms of model parameters)
every time new data are collected from the system and for predicting
the consequences of future management actions, while properly ac-
counting for uncertainty in the updated beliefs (Arhonditsis et al.,
2008a). Recent research has also shown that the Bayesian paradigm
can effectively alleviate problems of spatiotemporal resolutionmismatch
among different submodels of integrated environmental modeling
systems, overcome the conceptual or scale misalignment between pro-
cesses of interest and supporting information, exploit disparate sources
of information that differ with regard to themeasurement error and res-
olution, and accommodate tightly intertwined environmental processes
operating at different spatiotemporal scales (Boone et al., 2012; Hooten
et al., 2011; Qian et al., 2010; Wikle, 2003; Wikle et al., 1998; Zhang
and Arhonditsis, 2009).

Several recent studies have attempted to demonstrate the benefits
of Bayesian inference techniques in the context of model-based water
quality management. For example, Arhonditsis et al. (2007; 2008a,b;
2011) introduced a Bayesian calibration scheme using a wide range of
complexity mathematical models and statistical formulations that ex-
plicitly accommodate measurement error, parameter uncertainty, and
model structure imperfection. In particular, the statistical characteriza-
tion of the calibration framework was based on one of the following
assumptions: (i) a “perfect” model structure along with additive (or
multiplicative) measurement error; (ii) a simulator that imperfectly
represents the dynamics of the natural system and the process error is
invariant with the input conditions, i.e., the difference between model
and system dynamics was assumed to be constant over the annual
cycle for each state variable; and (iii) amodel structure that imperfectly
represents the dynamics of the environmental system but the corre-
sponding process error varies with the input conditions, i.e., time vari-
ant error terms were specified for each state variable. The former
formulation postulates that the model misfit is solely caused by the
error associated with the data, whereas the latter ones also consider
errors in the model structure, e.g., missing key ecological processes,
misspecified forcing functions, and erroneous mathematical expres-
sions. It should also be noted that, aside from the analytical/sampling
error, the term measurement error also reflects the notion that the ob-
servational data are just a “snapshot” of the real system, an instanta-
neous record of few components from numerous complex and
interactive processes that depending on the sampling network used,
the ecosystem modeled and the questions addressed, can form a prag-
matic basis for evaluating model performance (Arhonditsis and Brett,
2004). The characterization of the uncertainty underlying themodel pa-
rameters prior tomodel calibration (prior parameter distributions) was
based on field observations from the studied system, laboratory studies,
literature information, and expert judgment using the protocol
presented by the Steinberg et al. (1997) study. The Bayesian calibration
framework can then be used to quantify the information the data con-
tain about model inputs, to offer insights into the covariance structure
among parameter estimates, and to obtain predictions alongwith cred-
ible intervals for model outputs.

A common denominator of the aforementioned statistical formula-
tions was the postulation of conditional independence among the
error terms for various model endpoints. Striving for simplicity, this
strategy offers a convenient statistical description of the “model calibra-
tion” problem, but profoundly downplays the observed covariance
patterns among interconnected ecosystem variables, e.g., nutrients-
phytoplankton–zooplankton. The question arising though is to what
extent this pragmatic approach introduces a systematic bias in the
model parameterization and may affect the capacity of the modeling
exercise to support robust predictive statements. To this end, our
analysis evaluates the posterior parameter patterns and predictive

performance of a limiting nutrient–phytoplankton–zooplankton–
detritus model when the Bayesian calibration framework explicitly
accommodates the covariance of the error terms associated with
different state variables. We synthesize the lessons learned from this
exercise with the findings of a second comparative analysis that aims
to optimize model structure. In particular, we selected three formulas
of the zooplankton mortality term (linear, hyperbolic, sigmoidal) and
examine their capacity to determine the posterior parameterization as
well as the reproduction of the observed patterns. Our intent is to
illustrate the variety of options along with the critical decisions
involved when selecting the most suitable statistical framework for
model calibration and/or the optimal model structure. It is our belief
that our case study will offer – much needed – prescriptive guidelines
for the effective integration of Bayesian inference with process-based
models.

2. Methods

2.1. Case study

The study site for our modeling work was the Hamilton Harbour,
Ontario, Canada, a large embaymentwith long history of eutrophication
problems primarily manifested as excessive algal blooms, low
water transparency, predominance of toxic cyanobacteria, and low
hypolimnetic oxygen concentrations during the late summer (Hiriart-
Baer et al., 2009; Ramin et al., 2011). Since the mid 80s, when the
Harbour was identified as one of the 43 Areas of Concern (AOC) in the
Great Lakes area, the Hamilton Harbour Remedial Action Plan (RAP)
was formulated through a variety of government, private sector, and
community participants to provide the framework for actions aimed
at restoring the Harbour environment (Hall et al., 2006). The foundation
of the remedial measures and the setting of water quality goals reflect
an ecosystem-type approach that considers the complex interplay be-
tween abiotic variables and biotic components pertinent to its beneficial
uses (Charlton, 2001). The drastic nutrient loading reduction has histor-
ically played a central role in the restoration efforts, although the deter-
mination of the critical levels has been a thorny issue as the population
growth and increasing urbanization accentuate the pressure for expan-
sion of the local wastewater treatment plants (WWTPs) (Charlton,
2001).

Recent modeling work suggests that the water quality goals for TP
levels b20 μg L−1, chlorophyll a concentrations between 5–10 μg L−1

and water clarity N3 m will likely be met, if the proposed phosphorus
loading reductions at the level of 142 kg day−1 are actually achieved
(Gudimov et al., 2010; 2011; Ramin et al., 2011). However, it was em-
phasized that the predictive capacity of any modeling exercise in the
Harbour is conditional upon the credibility of the contemporary nutri-
ent loading estimates, which are uncertain and appear to inadequately
account for the contribution of non-point sources, episodic meteorolog-
ical events (e.g., spring thaw, intense summer storms), and short-term
variability at the localWWTPs (Gudimov et al., 2011). A follow-up anal-
ysis considered the fact that there is no true model of an ecological sys-
tem and used an averaging scheme for obtaining weighted averages of
the forecasts from two models of different complexity (Ramin et al.,
2012). Two important unknown factors were identified that can poten-
tially modulate the response of the system to the exogenous nutrient
loading reduction and may shape the duration of the transient phase
as well as the system resilience in the “post-recovery” era. First, the dy-
namics of phosphorus in the sediment-water column interface are
still poorly understood, and thus the historical notion that the internal
loading in the Harbour is minimal may be inaccurate. Second, the lack
of fundamental knowledge of the regulatory factors of herbivorous zoo-
plankton abundance and composition, even though existing evidence
suggests that a thriving zooplankton community can be instrumental
for achieving faster recovery rates in the Harbour. The latter prospect
highlights a central conclusion drawn from the recent modeling work
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