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This study explores the capability of an extended sequential Gaussian simulation algorithmwith incorporation of
categorical land use information (SGS-CI) for simulating spatial variability of soil total nitrogen (TN) contents
and assessing associated spatial uncertainty. 402 sampled data in soil TN contents in a county scale region and
the categorical land use map data of the study area were used to perform sequential simulations for comparing
the SGS-CI algorithm and the conventional SGS algorithm, and 135 validation samples were used to assess the
improvement of SGS-CI over SGS in prediction accuracy and uncertainty reduction. Results showed that the val-
idation data were more strongly correlated with the optimal prediction (i.e., E-type estimates) data of SGS-CI
than with those of SGS, and the mean error and the root mean square error of the optimal prediction using
SGS-CI were smaller than those using SGS. SGS-CI also performed slightly better than SGS in uncertainty model-
ing in terms of accuracy plots and goodness statistic G. In addition, because demands for soil total nitrogen by
different crops are usually different in agricultural practice,we showed that SGS-CI could be used to assess spatial
uncertainty of deficiency or abundance degrees of soil TN based on demands of different crops in different land
use types. Therefore, SGS-CI may provide an effective method for improving prediction accuracy and reducing
uncertainty in soil TN prediction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Soil nitrogen is an important nutrient for maintaining the earth's
ecosystems. Besides the nitrogenous fertilizers widely applied to farm-
lands for improving crop production, atmospheric deposition also repre-
sents an important source (Galloway et al., 2008; Kaiser, 2001).
Sometimes the content of soil nitrogen may exceed the requirement of
plant growth. This generally results in low nitrogen use efficiency and
high nitrogen loss (Li and Zhang, 1999). The nitrogen loss from soils
may further lead to negative impacts on the environment. For example,
nitrogen losses to water bodies often cause water eutrophication—a
serious ecological issue facing the environment nowadays (Carpenter
et al., 1998; Lu et al., 2007; Smith et al., 2001). Therefore, effectively
mapping the spatial distribution of soil nitrogen contents and the associ-
ateduncertainties inherent in spatial prediction are crucial to agricultural
management, environmentalmanagement, and ecologicalmanagement.

Geostatistics comprises a set of spatial statistical techniques, which
have beenwidely used to characterize spatial variability of soil properties
(Burgess and Webster, 1980; Ferguson et al., 1998; Li and Heap, 2011;
Tutmez and Hatipoglu, 2010). However, besides spatial prediction,
geostatistics also concerns quantifying the uncertainty associated with

a spatial prediction (Bourennane et al., 2007; Diodato and Ceccarelli,
2006; Qu et al., 2013). Currently uncertainty assessment is mainly
conducted using stochastic simulation algorithms (Bourennane et al.,
2007; Goovaerts, 2001; Zhao et al., 2005). Sequential Gaussian simula-
tion (SGS) is one of the most frequently used stochastic simulation
algorithms for continuous variables. The increasing utilization of sto-
chastic simulation algorithms in modeling uncertainties is justified by
the fact that interpolation algorithms, such as kriging, yield a unique
response—the interpolated map, which usually smoothes out local
details of spatial variability of the attribute being mapped (Goovaerts,
1997). This shortcoming of kriging results in overestimation of small
values and underestimation of large values. For these reasons, stochas-
tic simulations are generally preferred to interpolations for applications
where the spatial variation of themeasured field needs to be preserved
and uncertainty assessment is required. Indeed, stochastic simulation
techniques, that provide multiple possible realizations of an unknown
spatial distribution, do not aim to minimize a local error variance. Fluc-
tuations between realizations provide a quantitativemeasure of the un-
certainty about the underlying phenomenon.

An important issue, whichwe should not ignore, is the effect of some
categorical factors (e.g., geological formations, land use types, or soil
types) on the spatial variability of the target environmental or ecological
variable. Earlier studies suggested that soil type information could be
used to improve the prediction accuracy of some soil properties. For
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example, Voltz and Webster (1990) and Van Meirvenne et al. (1994)
used a method called stratified kriging (i.e., first stratify the survey area
based on soil types and then perform kriging independently within
each stratum) to improve the prediction accuracy of soil properties;
Goovaerts and Journel (1995) used simple indicator krigingwith varying
means and indicator cokriging to incorporate the effect of soil types on
interpolation of soil heavy metals, and found that the incorporation
could improve the delineation of deficient areas; Liu et al. (2006)
suggested a kriging combined with soil map-delineation (KSMD) meth-
od for incorporating the effect of soil types on several soil properties, and
also took into account the contributions of both hard data and soil type
data to the estimation variance. Recently, Goovaerts (2011) presented
two approaches to incorporate both point and areal data in spatial inter-
polation of continuous soil attributes. Goovaerts (2010) also presented a
general formulation of area-and-point kriging and demonstrated the
effect of geological formations on soil heavy metals. Qu et al. (2012)

recently investigated the effect of land use types on the spatial prediction
of soil nitrogen using the area-and-point kriging method.

However, all of these studies focused on optimal interpolations
rather than sequential simulations. As aforementioned, stochastic simu-
lation algorithms such as SGS have the advantages in quantifying and
visually displaying the uncertainty associated with spatial predictions.
Given the influence of categorical factors such as land use types on
local values of many soil properties, it is desirable to integrate the relat-
ed categorical information into a geostatistical stochastic simulation
algorithm such as SGS. Therefore, a satisfactory stochastic simulation
for these variables should include two components—the spatial varia-
tion between different categories and the variability within each cate-
gory. However, related studies in literature have been very rare so far.
In this study, the conventional SGS algorithm was combined with cate-
gorical land use information for simulating the spatial distribution of
soil total nitrogen (TN) contents in a study area and assessing the

Fig. 1. Soil sample locations and land use type distribution.

Table 1
Soil TN content (g kg−1) statistics for different land use types a.

Land use type Number Range Minimum Maximum Mean SD Skew Kurt CV

Total 402 2.73 0.31 3.04 1.46 0.54 0.47 −0.30 37.14
Paddy field 215 2.48 0.54 3.02 1.62 0.55 0.29 −0.56 33.82
Dry farmland 130 2.31 0.31 2.62 1.25 0.44 0.41 −0.09 35.18
Other land use type 57 2.46 0.58 3.04 1.38 0.58 0.75 0.12 41.80
Validation data 135 2.54 0.45 2.99 1.48 0.55 0.55 0.14 40.91

a SD—standard deviation; Skew—skewness; Kurt—kurtosis; CV—coefficient of variation (%).
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