
A universal simulator for ecological models

Niels Holst ⁎
Dept. of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark

a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 May 2012
Received in revised form 12 November 2012
Accepted 13 November 2012
Available online 21 November 2012

Keywords:
Software design
Simulation model
C++
XML
Agile
Object-oriented

Software design is an often neglected issue in ecological models, even though bad software design often
becomes a hindrance for re-using, sharing and even grasping an ecologicalmodel. In this paper, themethodology
of agile software designwas applied to the domain of ecologicalmodels. Thus the principles for a universal design
of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulatorwas
constructed using C++ and XML and is provided as a resource for inspiration.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An ecological model is an instrumental summary of an ecosystem,
written in the language of mathematics and logic. ‘Der Satz ist ein
Modell der Wirklichkeit, so wie wir sie uns denken’ (Wittgenstein,
1922). However, most ecological modellers are not trained mathemati-
cians, capable of formulating models in pure, analytical mathematics.
They are rather computational modellers, who implement their models
using simple mathematics implemented in software they often design
themselves. This software, which can become quite complicated, then
becomes both tool and object in the ensuing analysis. The design and
implementation details of this software are routinely given little atten-
tion, but the focus of this paper is just this: the proper design and imple-
mentation of ecological models.

Ecological models seem to call for a design of naturally given
building blocks, however diverse, which are suitably expressed in
an object-oriented design. An object encapsulates a state and has a
well-defined interface acrosswhich to communicatewith other objects.
It is easy think of individuals, populations or physical components of the
ecosystem in terms of objects. As a further guideline for software
design, Booch noted in Gamma et al. (1995), that ‘all well-structured
object-oriented architectures are full of patterns’; these patterns now
form the basic engineering concepts in any software design.

The discussion of the proper design of ecological modelling soft-
ware was initiated by Robertson et al. (1989), who experimented
with different ‘input languages’ to aid biologists in formulating models.
At the same time, Larkin and Carruthers (1989) presented HERMES, a
fully-integrated, visual modelling tool for biologists developed in
Smalltalk (the classic object-oriented programming language). Wenzel
(1992) presented MOSES, a language to formulate ecological models
consisting of ‘a hierarchical structuring of models out of autonomous
partial models residing in a model bank’. Thus, both HERMES and
MOSES relied on the composite pattern of Gamma et al. (1995), but
for different reasons neither tool was taken up: HERMES happened to
be implemented on a platform that was falling out of use, while the
syntax of MOSES may have been too demanding.

Silvert (1993) proposed object-oriented programming as the
eminent tool for ecological modelling. Along the same line, Reynolds
and Acock (1997) emphasised modular, generic model building blocks,
as a design solution to the obvious lack of model re-use and the wide-
spread duplication of efforts among ecological modellers. Papajorgji
et al. (2004) exemplified an object-oriented framework for ecological
models. However, its reliance on one particular software interface
technology (CORBA) in the implementation may have played a role
in the limited adoption of this design. Voinov et al. (2004) designed
a framework for spatial, hydro-ecological models that combines
modules written in STELLA (ISEE Systems, Lebanon, NH, USA) and
C++.

In some cases, new models must be composed largely of existing
models of various origins and designs. This problem was addressed
by the programming frameworks ModCom (Hillyer et al., 2003) and
CMP (Moore et al., 2007). With both frameworks, agro-ecological

Ecological Informatics 13 (2013) 70–76

⁎ Tel.: +45 87 15 81 92; fax: +45 87 15 60 82.
E-mail address: niels.holst@agrsci.dk.

1574-9541/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ecoinf.2012.11.001

Contents lists available at SciVerse ScienceDirect

Ecological Informatics

j ourna l homepage: www.e lsev ie r .com/ locate /eco l in f

http://dx.doi.org/10.1016/j.ecoinf.2012.11.001
mailto:niels.holst@agrsci.dk
http://dx.doi.org/10.1016/j.ecoinf.2012.11.001
http://www.sciencedirect.com/science/journal/15749541


models, that were not necessarily conceived to work together, can be
combined by wrapping existing models with code that make them
compliant with the interfaces defined by the framework. Whereas
ModCom depends on one particular technology (COM, Microsoft Inc.),
CMP was designed more generically and can be implemented on any
platform. An even more ambitious framework for the integration of
highly diverse models was presented by Villa (2001). His solution
involves a declarative syntax that uses XML (Bray et al., 2008) to describe
model structures and interfaces.

Themost ambitious designs of ecologicalmodels include formalism to
describe both processes and semantic relations (Wenzel, 1992). Semantic
modelling, however, is a demanding discipline whether expressed in
mathematics (Uso-Domenech et al., 2006; and references cited therein)
or a programming language, such as Prolog (Krivov et al., 2010). Villa et
al. (2009) showed how semantic knowledge of a system can, in principle,
be combined with a process model to simulate the system through
‘semantic annotation of a model’. However, they also noted that ‘the
practicality of large-scale adoption remains to be fully understood’. In
conclusion, it seems that ecological modelling is not yet ripe for the
inclusion of semantics into model formalism.

Even though the history of ecological modelling is quite short, it
has provided a multitude of models. On this background, we can
look for the successful models and thus empirically characterise the
best design. In systems biology, the SBML language soon became an
international standard for the specification of cell biology models
(Hucka et al., 2003). SBML, a dialect of XML, lets the user specify all
details of the model, including its structure and parameter values. The
original software was of limited capability but SBML files can now be
handled by many common software packages. In individual-based
modelling, NetLogo (Tisue and Wilensky, 2004) quickly won a large
user group. It comes with a graphical user interface, a library of models
and facilities for writing new models in the NetLogo language. The R
software package (R Development Core Team, 2011) is highly generic.
Operated from an old-fashioned prompt, it incorporates a programming
languagewith access to a huge and extensible library of functions, some
of which support modelling, e.g. ‘popbio’ for Leslie matrix models
(Stubben and Milligan, 2007). All-purpose graphical modelling tools,
such as STELLA, are also used for ecological modelling. They are useful
for teaching and prototyping but are rather limited in their expressive-
ness and do not scale well to model large systems (Robertson et al.,
1989; Villa, 2001). It is noteworthy that SBML, NetLogo and R are all
communal, open-source development projects.

Silvert (1993) anticipated that, with object-orientated program-
ming, future modellers would have available large libraries of standard
ecosystem components which could be re-used, extended and com-
bined at will. Arguably, this is not the case 20 years later. But the failure
of object-orienteddesign to live up to its promisewas already evident in
2001, when a group of industry experts created the foundation of ‘agile’
software development (Martin, 2006). The agilemethod defines a set of
principles and practices which concur very well with the scientific
process of ecological modelling (Holzworth et al., 2007). Even at a
psychological level, the emphasis on ‘motivated individuals’ and ‘self-
organising teams’ (Martin, 2006) should satisfy the outlook of most
ecological modellers.

Given the review above, this paper aims to derive a universal
design for ecological models. The envisioned design process is ideal.
Thus, the design is not for uniting a collection of existing, disparate
models but for developing newmodels the rightway. The design should
be modular and generic (Reynolds and Acock, 1997) and follow
established design patterns (Gamma et al., 1995), as well as the agile
design principles (Martin, 2006). Furthermore, the design should be
implemented as open-source software, following common open stan-
dards and relying on no particular platform. First a universal design is
derived, then, as a proof-of-concept, the design is implemented in a
combination of C++ and XML and presented as the open-source soft-
ware Universal Simulator.

2. The design

The design process (Parnas and Clements, 1986) went through five
steps, designing first the computational (Section 2.1) and structural
(Section 2.2) models, then the mechanisms for information flow
(Section 2.3), modularisation (Section 2.4) and component creation
(Section 2.5). Program listings are shown in C++-like pseudo-code
and in XML. Class names are written with a capital first letter but only
when this distinction is important.

2.1. Computational model

We envisage the simulation environment as a software construct,
populated with objects representing simulation components, foremost
the models which incarnate the dynamic behaviour of the ecosystem
being modelled (Fig. 1). The Factory object (Abstract Factory pattern,
Gamma et al., 1995) has the method ‘create’ used to populate the
simulation environment with the Component objects needed for a sim-
ulation (Listing 1). This method takes a ‘recipe’ as input. The recipe
describes the desired components and their configuration, such as
parameter values. Upon creation each component's ‘amend’ method
is called (Listing 1) to allow the component any additional self-
configuration. For example, a componentmay itself need to create addi-
tional objects depending on its parameters.

Once the environment is populated, a simulation can be carried
out. For this we need a Simulation object with a ‘run’ method to
execute the simulation in well-defined steps (Listing 2). Often a com-
ponent will need to orient itself in the simulation environment,
looking for other models with which to interact; this orientation
phase is implemented in the component's ‘initialize’ method. When
a simulation is run, it may involve replicate runs (iterations), for
example if some model has stochastic behaviour. The first step in
such an iteration is to ‘reset’ each component. For models, this
involves setting all the state variables to their start value. Then in the
innermost loop all components are repeatedly ‘updated’ in discrete
time steps for the duration of the simulation. At the end of each
model iteration, components may need some ‘cleaning up’, for example
the closing of files, and at the very end a ‘debriefing’ may occur, for

Fig. 1. Classes of the simulation environment. Simulation and Factory are Singleton classes
(Gamma et al., 1995). Model and Output classes are derived from the Component base
class and serve themselves as base classes for further derivation. ‘Et cetera’ stands for
additional classes derived from Model.

71N. Holst / Ecological Informatics 13 (2013) 70–76



Download	English	Version:

https://daneshyari.com/en/article/4375012

Download	Persian	Version:

https://daneshyari.com/article/4375012

Daneshyari.com

https://daneshyari.com/en/article/4375012
https://daneshyari.com/article/4375012
https://daneshyari.com/

