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Assessing the parameter uncertainty of complex ecosystem models is a key challenge for improving our
understandingof realworld abstractions, such as those for explaining carbon andnitrogen cycle at ecosystemscale
and associated biosphere-atmosphere-hydrosphere exchange processes. The lack of data about the variance of
measurements forces scientists to revisit assumptions used in estimating the parameter distribution of complex
ecosystemmodels.
An increasinglyused tool for assessingparameter uncertainty of complex ecosystemmodels isBayesian calibration.
In this paper,wegenerate twodata setswhichmay represent a seasonal temperature curveor the seasonality of soil
carbon dioxide flux and a single high peak put on a low background signal as is e.g. typical for soil nitrous oxide
emission. Based on these examples we illustrate that commonly used assumptions for measurement uncertainty
can lead to a sampling of wrong areas in the parameter space, incorrect parameter dependencies, and an
underestimationof parameter uncertainties. This stepneedsparticular attentionbymodelers as these issues lead to
erroneous model simulations a) in present and future domains, b) misinterpretations of process feedback and
functioning of the model, and c) to an underestimation of model uncertainty (e.g. for soil greenhouse gas fluxes).
We also test the extension of the Bayesian framework with a model error term to compensate the effects caused
by the false assumption of a perfect model and show that this approach can alleviate the observed problems in
estimating the model parameter distribution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Computer basedmodeling is a key tool for integrating knowledge of
different sources, e.g. field site measurements, theoretical assumptions,
and laboratory investigations and for understanding the underlying
processes (see Arhonditsis et al., 2008b). In order to gain inference from
thesemodels, real world applications have to prove the correctness and
therefore the usability of these models. As ecological models always
inherit structural errors or uncertainties of parameter values they can
never map the real world perfectly. By using Bayesian analysis, we can
quantify the uncertainty of model simulations, reduce the a priori
uncertainty of model parameters, consider structural errors (see
Arhonditsis et al., 2008b), update model parametrization after gaining
additional knowledge (see Sivia, 2006) or gain arguments to rank and to
choose between differentmodels (see Gilks et al., 1996; Sivia, 2006; van
Oijen et al., 2011). Therefore, Bayesian analysis is widely applicable
throughout various scientific fields.

We work with biogeochemical models, which are increasingly used
to simulate ecosystem carbon (C) and nitrogen (N) turnover processes
in the plant-soil system as well as the associated exchange processes
between the biosphere, atmosphere and hydrosphere (see Butterbach-
Bahl et al., 2004; Li et al., 2001). As a Tier 3methodology, defined by the
International Panel on Climate Changes (IPCC) guidelines for national
greenhouse gas (GHG) inventories, these biogeochemical models have
been used for national inventories (see Del Grosso et al., 2006; Kesik
et al., 2005) as they are capable to simulate soil greenhouse gas
emissions based on the current understanding of the underlying
biological and physico-chemical processes. When coupled to detailed
spatial databases biogeochemical models can a) be used to model the
pronounced spatial and temporal variability of GHG fluxes (Butterbach-
Bahl et al., 2004; Werner et al., 2007), b) evaluate various management
effects (e.g., fertilization or ploughing) on biosphere-atmosphere
exchange processes (Butterbach-Bahl et al., 2004) or c) analyze effects,
feedback and functioning of future climate conditions on the biogeo-
chemical cycling of C and N (Kesik et al., 2006). Lokupitiya and Paustian
(2006) state that such models provide more robust and accurate
estimates of ecosystem GHG emissions and removals. However, these
models require greater diligence in documentation, transparency, and
uncertainty assessment to ensure comparability between countries.
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A major challenge is that these models need to simulate all major
processes involved in ecosystem C, N, and water cycling. Thus, they
generally have a large number of model parameters. TheMOBILE-DNDC
model, a recentlydevelopedmodel framework incorporatingparts of the
biogeochemical DNDC and Forest-DNDCmodels (see Bruijn et al., 2009),
has 147model parameters for the submodule soil-chemistry alone. Some
of these parameters are “lumped parameters”, i.e. parameters describing
complex biological or physico-chemical processes (e.g., describing N2O
formation by microbial nitrification in a given soil layer), which cannot
directly be measured in the field due to significant spatial and temporal
variability and short-comes in measurement methodologies.

Setting up a Bayesian calibration framework (see Gelman et al.,
2003; Klemedtsson et al., 2008; Lehuger et al., 2009; Reinds et al.,
2008) for MOBILE-DNDC, we were facing serious difficulties, which
can already be observed when using Bayesian analysis for much
simpler models. In this article, we therefore use two simple models as
minimal examples, representing a common class of observations like a
temperature curve or time-series of the seasonality of soil fluxes of
carbon dioxide (CO2) or nitrous oxide (N2O) (see Wu et al., 2010).

Since the assumptions of the likelihood function are essential in this
methodology, we investigate their influence on aMarkov Chain in detail.
Note thatwe focus on the class of normal distributions, as they arewidely
used in the community. A one-dimensional normal distribution is
characterized by two parameters, an expectation and a variance. Both
unknownparameters are estimatedusingmeasurements. Unfortunately,
in ecological modeling, a reliable approximation of the variance of each
measurement, due tomicro-site variability or incomplete understanding
of small-scale feedbackmechanisms, is not always available, since e.g. the
experimental quantification of a parameter describing temperature
effects on gaseous denitrification products is hampered by the significant
variability in denitrification activities in different soils and technical
constrains with regard to the quantification of N2 fluxes (Groffman et al.,
2006). Moreover, consistency of measurement datasets is often affected
by site access, experimental costs or erroneous individualmeasurements.

One approach to overcome the lack of information is to use a
multiple of the measurement value as the standard deviation (e.g., a
multiple of one or a half of the value). Introduced by the authors of van
Oijen et al. (2005), a similar approach is used bynumerous studies in the
ecological community (see for example Arhonditsis et al., 2007, 2008a;
Karlberg et al., 2006; Klemedtsson et al., 2008; Patenaude et al., 2008;
Reinds et al., 2008; Svensson et al., 2008) as well as in other scientific
communities such as hydrology (see Conrad and Fohrer, 2009). The lack
of information about the variance of data for their investigated field site
led the authorsof vanOijen et al. (2005) to choose30%of themeanvalue
as standard deviation. Their assumption implies that a linear relation-
ship betweenmeasurement values and their standard deviations exists.
As these assumptions are widely used, it is important to understand the
effect on the estimation of the posterior parameter distribution.

Therefore, we studied three different approaches for dealing with
unknown standard deviations and contrast them with the true
variability. We illustrate their influence on the posterior distribution
and the efficiency of the Markov Chain. Additionally, we relax the
assumption of a perfect model by introducing a model error term
(cf. Arhonditsis et al., 2008b).

2. Notation

Using a deterministic model f depending on a parameter set
described by a vector θ∈Rn, we derive for each input variable x∈R a
model result y∈R:

y := f x; θð Þ; ð1Þ

which we compare to N data points (e.g. measurements) stored in a
data vector D for N inputs xi with i ∈ 1,…,N. We assume that the
difference between the data point of the ith location and the model

output (given a parameter) yi is normal distributed with expectation
0 and standard deviation σ(i). Hence, the likelihood function of the
difference is defined as (note that yi depends on θ: yi=yi(θ)):

l θ; D ið Þð Þ = 1
σ ið Þ

ffiffiffiffiffiffi
2π

p e
−1

2
D ið Þ−yið Þ−0

σ ið Þ
� �2

: ð2Þ

A common simplification when real variance information is
unavailable is to set σ(i) a) to a constant value for all measurements
D(i) or b) to a multiple of each measurement, e.g. σ(i)=1⋅D(i)
(cf. Svensson et al., 2008; van Oijen et al., 2005, using a relative error of
30%). Since we consider the measurements to be independent, the
likelihood function is simply the product of all individual likelihoods.

3. Simulations

With two simple models, we show the impact of different
assumptions for an unknown σ on the posterior parameter distribution.
We start with a simple sine curve (Model A) which could represent an
annual temperature curve or the seasonality of soil GHG emissions.
Subsequently a second model (Model B) is discussed, representing a
single peak emission put on a low background as is e.g. typical for soil
N2O emission (see Wolf et al., 2010). We explore three different
approaches for Model A, dealing with unknown σ and contrast the
results with the true σ of our generated data. Note, that we could also
use real data from ecological observations (e.g. soil emissions of N2O or
CO2). But using a synthetic model has the advantage, that σ of each
synthetic measurement (data point) is exactly known. Thus, we avoid
introducing estimation errors of themeasurements standarddeviations.

In the first approach, we define σ as a multiple of the absolute data
points (multiplicative sigma approach). In the second example, we
additionally introduce a minimum value as a lower threshold for σ
(capped sigma approach). This is motivated by theway Svensson et al.
(2008) tried to minimize the impact of small data points on the total
likelihood. A constant σ of 1.0 for all data points is used in the third
example (constant sigma approach), whereas the last example is run
with the exact σ (true sigma approach). The results of Model B were
limited to the multiplicative sigma approach and the true sigma
approach.We then relax the implicit assumption of a perfect model by
introducing a model error term to Model A. Therefore we extend the
Bayesian framework to a hierarchical Bayesian framework.

3.1. Model A

Consider a model with only two parameters a and b.

y := f x; a; bð Þ = a·sin xð Þ + b; x∈ 0;2πð Þ: ð3Þ

We generate a vector D with 100 synthetic data points for a given
parameter set θ=(a,b):=(10,5) with standard normal distributed
noise. To generate higher variances with higher absolute values we
simplymultiply thenoisewith the absolute valueof sine+1.0. Since the
sine is bounded by -1.0 and 1.0, the absolute value plus 1.0 ranges
between 1.0 and 2.0. Hence the standard normal noise is amplified by a
factor between 1.0 (not amplified) and 2.0 (doubled).

D ið Þ = 10·sin xið Þ + 5 + �i· jsin xið Þ j+ 1ð Þ ð4Þ

xi =
i·2π
100

; i = 1;…;100 ð5Þ

�i ∼ N 0;1ð Þ ð6Þ

It directly follows that the standard deviation of data point D(i)
equals |sin(xi)|+1.1 This synthetic dataset is generated once and used

1 cf. Fisz (1989) Var(aX+b)=a2Var(X).
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