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Fluxes of CO2 (FCO2) and energy (latent heat, LE; sensible heat, H) exchange between ecosystems and atmosphere,
as measured by the eddy covariance technique, represent a fundamental data source for global-change research.
However, little is known about the uncertainties of fluxmeasurements at an ecosystem level in China. Here,we use
data from six eddy covariance tower sites in ChinaFLUX, including two forested sites, three grassland sites, and one
agricultural site, to conduct a cross-site analysis of random flux errors (RFEs) of FCO2, LE, and H. By using the daily-
differencing approach, paired observations are obtained to characterize the random error in these measurements.
Our results show that: (1) TheRFEs of FCO2, LE, andH in different ecosystems of ChinaFLUX closely followadouble-
exponential (Laplace) distribution, presumably due to a superposition of Gaussian distribution for high flux
magnitude. (2) The RFEs of FCO2, LE, and H are not homogeneous and appear to be a linear function of flux
magnitude. (3) Except forH, theRFEs of FCO2 and LE exhibit a distinct seasonal pattern. For FCO2, the dependence of
RFEs on wind speed varies somewhat according to vegetation type, whereas for LE and H, there is no such
dependence. The effect of temperature onRFEs is not statistically significant (Pb0.05). Both the distribution and the
relationship of RFEs with flux magnitude in ChinaFLUX are essentially in accord with those in AmeriFlux and
CarboEurope.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The long-term and continuous eddy covariance (EC) measurements
of ecosystem fluxes such as CO2, water, and energy between biosphere
and atmosphere at tower sites around the world (e.g., Baldocchi et al.,
2001; Yu et al., 2006; Mizoguchi et al., 2009) offer various opportunities
to improve our understanding about the fundamental processes of
ecosystem functions in both time and space (Baldocchi, 2003; Friend et
al., 2007). However, there is a growing recognition within the eddy-flux
community that more attention needs to be paid to the uncertainties
inherent in these EC measurements (Hollinger and Richardson, 2005;
Richardson et al., 2006; Lasslop et al., 2008). With the development of a
model-data fusion method in terrestrial ecosystem research, data
uncertainties are as important as data themselves and play a major role
in determining the outcome (Raupach et al., 2005). Therefore, how to
quantify the uncertainty of flux data and acquire the probability density
function (PDF) and its statistical characteristics have become a frontier
issue in global flux research.

Flux data actually are not deterministic; rather, they can be expressed
as the “correct” value plus or minus measurement error, which is called

uncertainty. Specifically, a fluxmeasurement (x) represents a sum of the
“true” flux (F) and the potential measurement errors, which can be
further divided into systematic errors (ε) and random measurement
errors (δ), namely x=F+ε+δ (Richardson et al., 2006). The systematic
errors and randommeasurement errors are usually evaluated separately.
The energy imbalance and incomplete nocturnal data may cause the
systematic errors, which are difficult to identify. However, the systematic
errors can be eliminated by calculating the bias. Identifying the source of
systematic error and how to reduce this error represent an active
research area in flux study (Goulden et al., 1996; Moncrieff et al., 1996;
Mahrt, 1998; Twine et al., 2000;Massman and Lee, 2002;Morgenstern et
al., 2004). In contrast to systematic error, random error is related to the
observational systems (e.g., gas analyzers, ultrasonic apparatus, data
acquisition system, and the calculationmethod), turbulent transport, and
the heterogeneity in flux footprint (Moncrieff et al., 1996). Inmost cases,
random measurement errors cannot be eliminated, but their numerical
value can be obtained by statistic analysis. Here, as regards the
uncertainty of flux observation data, we mainly focus on RFEs.

Extensive studies on the random errors of EC data have been
conducted by a repeated sampling method in a single tower or twin
towers (Hollinger and Richardson, 2005; Richardson et al., 2006; Rannik
et al., 2006) or statistical analysis of model residuals (Hagen et al., 2006;
Chevallier et al., 2006; Lasslop et al., 2008). Hollinger and Richardson
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(2005) studiedflux data uncertainty by using repeated samplingmethod
in two nearby towers in Howland Forest, pointing out that random
measurement error follows a double-exponential (Laplace) distribution
rather than a normal (Gaussian) distribution. Meanwhile, a daily-
differencing approach was proposed to quantify the RFEs in a single
tower (Hollinger and Richardson, 2005). Rannik et al. (2006) discussed
the uncertainty of flux observation data through use of the repeated-
sampling method at the same time in two nearby towers (within a
distance of 30 m) in Hyytiala of Finland. Richardson et al. (2006)
conducted a cross-site study on flux measurement errors in AmeriFlux,
including forest, grassland, and farmlandecosystems. Theydemonstrated
that flux measurement errors of different ecosystems follow a double-
exponential distribution as well. The relationships between measure-
ment errors and environment variables and flux magnitudes are also
examined. Based onmodel residuals, Richardson et al. (2008) conducted
a systematic analysis of the statistical characteristics of CO2 flux random
errors in several forest ecosystems in Europe, and they suggested that the
random error analysis method based onmodel residuals is a supplement
to the daily-differencing approach based on single (double)-tower data.

Based on these investigations, a number of studies on parameter
optimization and model-data fusion were conducted (Richardson and
Hollinger, 2005; Hagen et al., 2006; Lasslop et al., 2008). Regarding
analysis of randommeasurement error, Richardson and Hollinger (2005)
compared the effects of two different error distributions (Gaussian
distribution versus double-exponential distribution) onmodel parameter
selections. They also explored the relationship between randomerror and
environment factors using the maximum likelihood method for param-
eter optimization. Hagen et al. (2006) conducted uncertainty analysis of
gross ecosystem exchange (GEE) derived from 7 y of continuous eddy
covariance measurements in Howland Forest. In China, Liu et al. (2009)
analyzed the randomerror of CO2fluxmeasurements, and they employed
the bootstrapping method to evaluate different models and optimization
methods in influencing the estimate of key parameters and CO2 flux
components. Zhanget al. (2008)explored theeffect of errordistributionof
CO2 flux on key parameters in ecosystem carbon-cycle models. However,
the statistical properties of randommeasurement errors remain currently
under debate and need to be tested and verified at more flux towers
around theworld (Richardson et al., 2006; Lasslop et al., 2008;Williams et
al., 2009).

This paper seeks to obtain the statistical characteristics of RFEs for
FCO2, LE, and H; quantify the uncertainty of flux data; determine its
influencing factors; and compare the differences of the RFEs among
ChinaFLUX, AmeriFlux, and CarboEurope. Data used in our analyses are
from six sites in ChinaFLUX, including two forested sites, three grassland
sites, and oneagricultural site.Wefirst focus on evaluating the statistical
characteristics anddistributionofRFEs inCO2 andenergy (latent energy,
LE and sensible heat, H). Then we examine the relationship between
RFEs and fluxmagnitude as well as wind speed. The seasonality of RFEs
and the influence of temperature on the random error in all three fluxes
are also discussed. Finally we compare our results with similar studies
for the AmeriFlux and CarboEurope. All these works tend to provide
technical support for quantifying flux observation uncertainty and
properly evaluating flux observations, which in turn will be helpful for
model-data fusion research and model evaluation.

2. Data and method

2.1. Data

Data used in our analyses are obtained from six eddy covariance sites
within the ChinaFLUX network, representing a diverse range of
ecosystems: subtropical evergreen coniferousplantation (QYZ), northern
warm temperate deciduous broad-leaved forest (CBS), Qinghai-Tibet
Alpine meadow (HBGC), Qinghai-Tibet alpine grassland meadow (DX),
Inner Mongolia typical grassland (NM), and Huang-Huai-Hai farmland
(YC). The flux and routine meteorological measurements are operated

with the same set of instruments andprogramat the six forest sites (Yuet
al., 2006). Formost sites, at least 3 or 4 y of continuousmeasurements are
available. Anoverviewof these sites is given inTable1. Extensivedata and
site information are available online at the ChinaFLUX Web site (http://
www.chinaflux.org/).

The datasets are processed by using the flux data processing system
at ChinaFLUX (Li et al., 2008). The processing includes: (1) coordinate
rotation for 30-min flux data (Wilczak et al., 2001), (2) Webb–
Pearman–Leuning (WPL) correction (Webb et al., 1980; Leuning,
2004), (3) storage calculation for forested sites (Hollinger et al., 1994),
(4) outlier rejection (Papale et al., 2006), and (5) nighttime filtering
with u* threshold obtained by evaluating the relationship between
temperature and CO2 flux (Reichstein et al., 2005).

2.2. Method

2.2.1. Determination of flux uncertainty
Uncertainty associatedwith themeasured eddy covarianceflux canbe

defined as the variance of high-frequency data in average time (e.g.,
30 min), which can be detected by taking multiple measurements when
the data are relatively independent and the condition is stable and then
using the variability of these measurements to estimate the standard
deviation. However, flux is usually not stable, because of the influence of
phenologic and climate conditions. Therefore, simultaneous measure-
ments from two towers located nearby can be used to meet the
assumption of the repeated-samplingmethod (Hollinger and Richardson,
2005; Rannik et al., 2006). Given the fact that there are very few sites
where two adjacent towers can simultaneously measure fluxes for the
same ecosystem in ChinaFLUX, we use the daily-differencing approach as
described by Hollinger and Richardson (2005) to quantify the random
measurement errors. Specifically, a measurement pair (x1, x2) is
considered valid only if bothmeasurements aremade under “equivalent”
environmental conditions (PPFD within 75 μ mol m−2 s−1, air temper-
ature within 3 °C, and wind speed within 1 m/s) in the same successive
two days. These criteria are chosen as a trade off for two conflicting
requirements: (1) environmental conditions sufficiently similar that the
differencebetween themeasuredfluxes canbeattributed to randomerror
insteadof thedifferences in forcingvariables; and (2) a large enough set of
measurement pairs to accurately characterize the probability distribution
function (PDF) of the random error (Richardson et al., 2006). Regarding
the limitation of sampling length, the sample should be obtained formore
than 1 y. We use (x1-x2)/

ffiffiffi
2

p
to express the measurement errors, δ. The

standard deviation of random errors is used to characterize flux
measurementuncertainty. Finally,wecanestimate theRFEsbycalculating
the standard deviation of the differences, which is expressed as:

σðδÞ = σðx1−x2Þffiffiffi
2

p ð1Þ

2.2.2. Analysis of the RFEs
According to the traditional micrometeorologic method based on

turbulence theory (Lenschow et al., 1994; Mann and Lenschow, 1994),
the relationshipbetweenrandommeasurementerror andenvironmental
variables can be described as:

σ∝ j−F j
ffiffiffiffiffiffi
hτ
−uT

r
ð2Þ

where j−F j is the absolute value ofmean flux, hτ is the appropriate height
measure for the integral timescale, ū is the mean wind speed at the
measurement height, and T is the sampling period (e.g., T=1800 s for our
study). From Eq. (2), we can expect that the flux magnitude and wind
speed may be the main factors influencing randommeasurement error.

In this study, we focus on the scaling of RFEs with j−F j and ū. The
inferred random errors are divided into many bins on the basis of flux
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