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a  b  s  t  r  a  c  t

This  paper  proposes  a  novel  multi-objective  hybrid  evolutionary  algorithm  (MOHEA)  that  allows
spatially-explicit  modelling  of local  outbreaks  and  dispersal  of  population  density.  The MOHEA  was
tested  for  modelling  at  once  two cyanobacteria  populations  at one  lake site,  same  population  in two
different  lakes  and same  population  at three  different  sites  of  one  lake.  All  experiments  with  MOHEA
utilized  water  quality  time-series  and  abundances  of  Anabaena  and  Cylindrospermopsis  monitored  in
the  sub-tropical  Lakes  Wivenhoe  and  Somerset  in Queensland  (Australia)  from  1999  to  2010.  Results
have  demonstrated  the  capacity  of MOHEA  to  determine  generic  rules  that:  (1)  reveal  crucial  thresh-
olds  for outbreaks  of cyanobacteria  blooms,  and (2)  perform  spatially-explicit  forecasting  of  timing  and
magnitudes  7-day-ahead  of  bloom  events.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The current economic development in Australia and world-
wide goes side by side with the global problems of eutrophication
and climate change. There is evidence that high nutrient loads,
rising temperatures, enhanced stratification, increased residence
time and salinisation of drinking water reservoirs and lakes
favor the dominance of cyanobacteria (Paerl and Huisman, 2008).
Therefore water industries have to consider coinciding effects of
eutrophication and climate change in their strategies to manage
cyanobacterial blooms. However our ability to predict the occur-
rence and composition of cyanobacteria blooms has lagged well
behind our ability to control total algal biomass. We  urgently need
advances in our ability to predict and prevent the growth of unde-
sirable algae and other nuisance-forming organisms (Smith and
Schindler, 2009). To develop comprehensive lake-based monitor-
ing and early warning systems for water quality and cyanobacteria
is therefore the right step forward (Schindler, 2009). Frequent
population outbreaks of toxic cyanobacteria in drinking water
reservoirs and lakes will have detrimental effects on raw water
quality and aquatic biodiversity, and costly technology will be
required to sustain safe human water supplies (e.g. Dodds et al.,
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2009). In order to assist water industries in making informed
decisions and timely adaptations of measures for preventing and
controlling effects of cyanobacteria, more adequate computer mod-
els are required (Jackson et al., 2001).

Traditionally, process-based models which allow simulations of
food web dynamics and nutrient cycles over time by using ordi-
nary differential equations (ODEs) (Pei and Ma,  2002; Arhonditsis
and Brett, 2005; Chen et al., 2014) are widely used. However,
there are some shortcomings to use these process-based models.
Firstly, process-based models may  hardly comprehend the causal
complexity of the phytoplankton community in order to make
accurate daily forecasts of population dynamics of algal species.
Secondly, process-based models are calibrated for a limited num-
ber of years with annual data that constrains their validity to those
years. Thirdly, the data demand of process-based models by far
exceeds operationally-available data of a lake or a lake site at a
certain point in time. Therefore it is unlikely that process-based
models may  ever been applicable as operational forecasting tools
for early warning.

With rapidly growing amounts of ecological data and progress in
computing technology, powerful tools for inductive reasoning and
forecasting from complex data become available. Artificial neural
networks (Hornik et al., 1989) approximate complex data with high
accuracy by multivariate nonlinear models (Recknagel et al., 1997;
Wei  et al., 2001; Jeong et al., 2001), but lack the explicit repre-
sentation of models extracted from data. In recent years, the use
of evolutionary algorithms (EAs) (Holland, 1975) has gained wide
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popularity in domains, such as machine learning, pattern recog-
nition, economic prediction and so on, due to their characteristics
of self-adaptation, self-organization, self-learning and generality
(Bäck et al., 1997). Since EA applications for ecological modelling
have been pioneered by Bobbin and Recknagel (2001), Cao et al.
(2006) developed the hybrid evolutionary algorithm (HEA) that
is now worldwide applied for non-spatially-explicit modelling of
cyanobacteria blooms in lakes and rivers (e.g. Kim et al., 2007; Chan
et al., 2007; Recknagel et al., 2014a) as well as for knowledge dis-
covery (Recknagel et al., 2014b, 2016). Since the HEA was designed
to develop non-spatially-explicit models, resulting typically single
output rule models did not represent spatial or multi-species rela-
tionships. However plankton communities in lakes vary seasonally
and spatially by abiotic factors like advection, thermal stratification,
nutrient loads as well as by biotic factors like competition, grazing,
and predation. Therefore there is a demand for models allowing
spatially-explicit forecasting that can identify local hotspots for
seasonal outbreaks of cyanobacteria blooms.

It is well known that multi-objective optimization (MOO) tech-
niques (Marler and Arora, 2004; Miettinen, 1999; Deb, 2001;
Hanne, 2000) have been widely applied in many fields. The multi-
objective hybrid evolutionary algorithm (MOHEA) proposed in this
study allows to develop IF-THEN-ELSE rules with multiple out-
puts whereby fitting errors of all outputs are minimized by MOO.
Resulting IF-THEN-ELSE rules with multiple outputs provide the
benefit of: (1) revealing threshold conditions (IF-condition) that
trigger population outbreaks being generic for all outputs, and (2)
forecasting multiple species at a single site and single species at
multiple sites (see Fig. 1). The functionality of MOHEA is tested for
7-day-ahead forecasting of the cyanobacteria Anabaena and Cylin-
drospermopsis in the Lakes Wivenhoe and Somerset, Queensland
(Australia) based on physical and chemical water quality data mon-
itored from 1999 to 2010. The paper validates forecasting results
of different types of multi-output models and discusses ecological
relationships revealed by input sensitivity analyses of the models.

2. Materials and methods

2.1. Study sites and data

Different data were utilized for developing the three types of
multi-output rule models. Eleven years of water quality data from
1999 to 2010 from Lake Wivenhoe in Queensland, Australia were
used to develop single-site multi-species and multi-site single-
species models. Measured data from Site30001 of Lake Wivenhoe
(see Fig. 2) were used for developing single-site multi-species mod-
els and the measured data from sites 30015, 30016 and 30017 were
used for developing multi-site single-species models. Tables 1 and 2
show the water quality variables of the 11-year period utilized for
developing single-site multi-species models and multi-site single-
species models respectively.

To develop multi-lake single-species models, water quality data
of the same time period from Lake Wivenhoe (Site30001) and Lake
Somerset (Site20001) were utilized for the modelling. Fig. 3 shows
the map  of Lake Somerset and all sampling sites. Table 3 shows
the measured water quality data utilized for developing multi-lake
single-species models.

It is notable that the monthly measured data from the two  lakes
were averaged over the euphotic depth of 3 m.  Since the measure-
ment intervals of the raw data were highly irregular and sampling
dates differed between physical, chemical and biological variables,
the data were linearly interpolated to suit daily time steps for fore-
casting. In order to develop 7-days-ahead forecasting models the
daily interpolated input data have been shifted by 7 days against
the daily output data.

2.2. Multi-objective hybrid evolutionary algorithm

The hybrid evolutionary algorithm (HEA) developed by Cao et al.
(2006) evolves single rule models by genetic programming and
optimizes model parameters by a genetic algorithm. Our recent
study (Cao et al., 2014) intensively investigated the performance of
six different parameter optimization algorithms, which include hill
climbing (HC), simulated annealing, genetic algorithm, differen-
tial evolution, covariance matrix adaptation evolution strategy and
estimation of distribution algorithm, when developing single rule
models for chlorophyll-a and Cylindrospermopsis. The experimen-
tal results demonstrated that HC always performed best. Hence this
study used HC to optimize constant parameters of the rule models
and extended the previous research by improving the rule model
types from single output to multiple outputs. The multi-objective
hybrid evolutionary algorithm (MOHEA) has been developed by
integrating multi-objective optimization into HEA. The concep-
tual diagram in Fig. 4 shows (of) the structure and functioning
of MOHEA using water quality data as inputs and Anabaena data
as outputs. It shows that genetic programming (GP) identifies the
optimal model structure by applying the genetic operators: repro-
duction, crossover and mutation. Simultaneously the HC algorithm
is utilized to optimize the model parameters. The overall “fittest”
model is determined by the fitness function that applies to multiple
outputs by multi-objective optimization. The details of GP and HC
were briefly described in what follows.

2.2.1. Structure optimization of multi-output rule models
1) Model representation

We used GP (Koza, 1992, 1994) as the main technique to evolve
the rule model structure. Because GP typically operates on parse
trees instead of bit strings as traditional GA does, it is well suited
to evolve an equation or formula relating the output and input
variables. Firstly we defined the following three function sets as:

• Logic function set: FL = {AND, OR};
• Comparison function set: FC = {>, <, ≥, ≤};
• Arithmetic function set: FA = {+, −, ∗,/, exp, ln}.

In our case, a multi-output rule model with an IF-THEN-ELSE
structure is represented as a vector of multiple trees in GP with
the form of (IF Tree, THEN Tree 1, THEN Tree 2, . . ..,  THEN TreeN,
ELSE Tree 1, ELSE Tree 2, . . .,  ELSE TreeN). N is the total number
of outputs. IF Tree denotes the IF condition branch, THEN Tree and
ELSE Tree denote the result branches of the THEN and ELSE branch
respectively. Their function sets are:

FIFTree = FL∪FC∪FAandFTHENTree/ELSETree = FA.

They have the same terminal set as:

T = {x1, . . .,xn,c}
where n is the number of input variables and c is a random constant.

Fig. 5 shows an example of a multi-output rule model for pre-
dicting Cylindrospermopsis (Cylind)  abundance in different sites
from Site1 to Site3 (Fig. 5(a)) and its multi-tree representation in
GP (Fig. 5(b)–(h)). The rule model shows the relationship between
the abundance of Cylind in different sites and some selected water
quality parameters which include water temperature (WT), con-
ductivity (Cond), dissolved oxygen (DO), pH, total phosphorus (TP),
and total nitrogen (TP). Note that we  provided this example for the
purpose of showing the rule structure only which may  not have any
biological meaning.

2) Genetic operators
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