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a  b  s  t  r  a  c  t

Species  distribution  models  (SDMs)  frequently  project  substantial  declines  in the  spatial  extent  of  cli-
matically  suitable  habitat  in response  to scenarios  of  future  climate  change.  Such  projections  are highly
disconcerting.  Yet,  considerable  variation  can  occur  in the  direction  and  magnitude  of  range  changes  pro-
jected  by  different  SDM  methods,  even  when  predictive  performance  is similar.  In  this  study,  we assessed
whether  particular  methods  have a  tendency  to  predict  substantial  loss  or gain of suitable  habitat.  In par-
ticular, we  asked, “are  14  SDM  methods  equally  likely  to predict  extreme  changes  to  the  future  extent  of
suitable  habitat  for  220 Australian  mammal  species?”.  We  defined  five  non-mutually  exclusive  categories
of  ‘extreme’  change,  based  on  stability  or loss  of current  habitat,  or the  dislocation  of  current  and  future
habitat:  a)  no  future  habitat  (range  extinction);  b)  low  stability  of  current  habitat  (≤10%  remains);  c)  no
gain  of  habitat  in  new  locations;  d)  all future  habitat  is in  new  locations  (i.e.  completely  displaced  from
current  habitat);  and e)  substantial  increase  in  size  of  habitat  (future  habitat  is ≥100%  larger  than  cur-
rent).  We  found  that  some  SDM  methods  were  significantly  more  likely  than  others  to  predict  extreme
changes.  In  particular,  distance-based  models  were  significantly  less  likely  than  other  methods  to predict
substantial  increases  in  habitat  size;  Random  Forest  models  and  Surface  Range  Envelopes  were  signifi-
cantly  more  likely  to  predict  a complete  loss  of  current  habitat,  and  future  range  extinction.  Generalised
Additive  Models  and  Generalised  Linear  Models  rarely  predicted  range  extinction;  future  habitat  com-
pletely  disjunct  from  current  habitat  was  predicted  more  frequently  than  expected  by  Classification  Tree
Analysis  and  less  frequently  by  Maxent.  Random  Forest  generally  predicted  extreme  range  changes  more
frequently  than other  SDM  methods.  Our  results  identify  trends  among  different  methods  with  respect
to  tendency  to  predict  extreme  range  changes.  These  are  of significance  for climate-impact  assessments,
with  implications  for transferability  of models  to novel  environments.  Our  findings  emphasise  the need
to  explore  and  justify  the  use  of  different  models  and  their  parameterisations,  and  to  develop  approaches
to  assist  with  optimisation  of models.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Contemporary anthropogenic climate change has already
resulted in shifts in the range margins of numerous, diverse taxa
(Melles et al., 2010; Chen et al., 2011; Garroway et al., 2011; Rubidge
et al., 2011), and paleoecological data suggest that range shifts
were the norm during previous episodes of climate change (Birks,
1989; Huntley, 1990; Graham, 1992; Willis and MacDonald, 2011).
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Understanding the extent to which species’ distributions may  shift
in response to climate change over the course of this century and
beyond may  assist in identifying species vulnerable to climate
change, prioritising conservation efforts, and developing optimal
adaptation and land management plans.

Correlative species distribution models (SDMs) are frequently
used to examine the potential for changes to the distribution and
quality of habitat under scenarios of future climate (Franklin, 2010).
This approach is based on the assumption that the location of pop-
ulations reflects the environmental preferences and tolerances of
a species (Guisan and Thuiller, 2005). Models of this relationship,
based on the observed subset of those populations, can then be used
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to assess the suitability of a region, for a particular species, under
current, past or future climate. Such climate change experiments
assume that relationships inferred from historical data remain con-
sistent under a changing climate (Maraun, 2012).

Predictions of broad-scale changes in species’ distributions in
response to climate change have contributed to substantial con-
cern regarding the fate of biodiversity in a warming world (e.g.
Thomas et al., 2004; Ben Ras Lasram et al., 2010; Sauer et al., 2011;
Ihlow et al., 2012; Ochoa-Ochoa et al., 2012; Warren et al., 2013).
Numerous studies indicate that, under climate change, a sizeable
proportion of species will be faced with an absence of suitable habi-
tat (range extinction), or future habitat that is completely disjunct
from current habitat. For example, ∼24% of Mexican amphibian
species are at risk of losing all habitat by 2080 (Ochoa-Ochoa et al.,
2012), while habitat for nearly 12% of the world’s Chelonian species
may  lie in areas currently unsuitable (Ihlow et al., 2012). Depend-
ing upon the scenario of greenhouse gas emissions, 11–19% of 1541
seed plants in Alberta, Canada, were predicted to lose > 90% of cur-
rent habitat by 2080 (Zhang et al., 2015). Similarly, an analysis of
2954 species across North and South America predicted the loss of
all existing habitat for at least 10% of species by 2071–2100 (Lawler
et al., 2009). In one of the largest studies to date, Warren et al.
(2013) estimated that after accounting for dispersal, 2–6% of 5382
animal species would lose ≥ 90% of current habitat. Hence, predic-
tions by SDMs indicate that the rate of extinction in the 21st century
may  exceed estimates of historical extinction events from the fos-
sil record. However, there is on-going debate as to the accuracy of
SDMs and whether they will over- or under-estimate range changes
and extinction (see review by Bellard et al., 2012).

In recent years the number of methods for fitting SDMs
has increased considerably (Elith and Graham, 2009; Elith and
Leathwick, 2009; Franklin, 2010), and now includes distance-based
or profile models (e.g. BIOCLIM, Nix, 1986; Booth et al., 2014), sta-
tistical models that can fit complex non-linear relationships (such
as Generalised Additive Models) and machine-learning techniques
(Elith et al., 2008; Elith and Leathwick, 2009). These methods differ
in complexity, data requirements and ease of use, and their char-
acteristics have been well-described elsewhere (e.g. Syphard and
Franklin, 2009; Franklin, 2010; Xinhai and Wang, 2013).

SDM method choice is influenced by access to software, data
availability (e.g. presence only or presence/absence records), user
ability and the particular goals of the study (Segurado and Araújo,
2004; Elith and Leathwick, 2009; Ahmed et al., 2015), although dif-
ferent disciplines and geographic regions have traditionally utilised
different techniques (Elith and Leathwick, 2009). However, identi-
fication of the most appropriate SDM method is complicated by a
number of factors, and multi-model comparisons have repeatedly
concluded that there is no single ‘best’ method (Elith et al., 2006;
Diniz-Filho et al., 2010).

Several studies have suggested that SDM methods with high
flexibility in modelling complex species-environment relation-
ships may  outperform simpler methods (Elith et al., 2006; Tsoar
et al., 2007; Li and Wang, 2013). For instance, machine-learning
algorithms (such as Random Forests, Maxent and Boosted Regres-
sion Trees) frequently outperform regression-based approaches
(e.g. Multivariate Adaptive Regression Splines and Generalised Lin-
ear Models) (Bucklin et al., 2015; but see Guillera-Arroita et al.,
2015). Others caution the use of complex methods: while these
may  predict observed occurrence patterns well, they may result in
overfitting, and hence may  not necessarily predict an acceptable
representation of the species’ potential distribution (Diniz-Filho
et al., 2010; Li and Wang, 2013). Models with high predictive
accuracy for the data used in their calibration may  also demon-
strate poor transferability (or generality); that is, their performance
may  decline when projected onto different geographic regions
(Heikkinen et al., 2012) or time periods (Fronzek et al., 2011). The

Random Forest model, for example, generally has high predictive
capacity as determined by AUC (the area under the receiver-
operating characteristic curve) calculated on data similar to those
used for model-fitting (Coetzee et al., 2009; Virkkala et al., 2010;
Yen et al., 2011). However, this model has been shown to have lower
transferability than other SDM methods, such as Generalised Linear
Models (Heikkinen et al., 2012; Crimmins et al., 2013).

Different SDM methods may  also have similar predictive per-
formance (e.g. as quantified by the AUC or True Skill Statistic [TSS];
Allouche et al., 2006) yet generate very different predictions of
suitable habitat (Beaumont et al., 2009; Parviainen et al., 2009;
Syphard and Franklin, 2009). These differences can be magnified
when models are projected onto alternative climate scenarios (for
which there is also no ‘best’ choice), with different SDMs vary-
ing in the magnitude and direction of predicted changes (Pearson
et al., 2006; Beaumont et al., 2007, 2008). Model performance can
also be influenced by a species’ characteristics and its distribu-
tion data (Syphard and Franklin, 2009; Dobrowski et al., 2011;
García-Callejas and Araújo, 2015), selection of predictor variables
(Barbet-Massin and Jetz, 2014) and geographic location (Engler
et al., 2011). As such, the choice of SDM method constitutes the
primary source of variation in predictions of species’ future distri-
butions (Buisson et al., 2010; Garcia et al., 2012).

These factors have led to the current trend to combine mul-
tiple models into ‘ensembles’ (Araújo and New, 2007; Beaumont
et al., 2009; Marmion et al., 2009; Grenouillet et al., 2011; Garcia
et al., 2012; Xinhai and Wang, 2013). Ensemble modelling experi-
ments can then be used to distinguish regions of model consensus
(i.e. where most models agree that the environment is suit-
able/unsuitable) from regions where there is disagreement. A
number of studies have found that ensembles outperform indi-
vidual models (Marmion et al., 2009; Yen et al., 2011; Grenouillet
et al., 2011; Crossman et al., 2012), however, the use of ensembles
can still be problematic (Elith et al., 2010; Rapacciuolo et al., 2012;
Crimmins et al., 2013) as errors/biases in individual SDMs may  lead
to incorrect conclusions being drawn from the ensemble.

While previous studies have assessed sources of variation in
SDM output (e.g., Dormann et al., 2008; Nenzén and Araújo, 2011;
Watling et al., 2015), less attention has been given to whether par-
ticular SDM methods are biased towards predicting substantial loss
or gain of suitable habitat, and if so, why. Therefore, in this study,
we explored ‘extreme’ range changes predicted by 14 SDM meth-
ods incorporated into the R packages biomod2 (Thuiller et al., 2012)
and dismo (Hijmans et al., 2011). In particular, we  asked whether
these SDM methods predicted ‘extreme’ range changes with equal
frequency. We  defined five non-mutually exclusive categories of
extreme change, based on stability or loss of current habitat or the
dislocation of current and future habitat: a) no future habitat (range
extinction); b) low stability of current habitat (i.e. ≤ 10% of current
habitat remains, although future habitat may  be predicted in new
locations); c) no gain of habitat in new locations (future habitat is
identical to, or a subset of, current habitat); d) all future habitat is in
new locations (future habitat does not overlap with current habi-
tat); and e) substantial increase in size of habitat (i.e. future habitat
is at least twice the size of current habitat). We  modelled future
habitat suitability for 220 mammal  species across Australia and
compared the proportion of predictions from each SDM method
that calculated these extreme range changes.

2. Methods

2.1. Species records

For this study, we focused on native terrestrial mammal  species
in Australia, as their distributions are generally well known and
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