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a  b  s  t  r  a  c  t

The  dynamics  of  plankton  ecosystems  have  long  been  of  interest  to ecologists  and  mathematicians,  with
some of the  earliest  examples  of chaotic  dynamics  being  provided  by  ecological  models.  Mortality  terms
were  initially  identified  as determinants  of  chaos  in simple  ecosystem  models,  but  relatively  little  atten-
tion has  been  given  to the  role of  grazing  terms.  The  behaviour  of omnivores  has  arisen  as  a  particularly
interesting  case.  Recent  experiments  have  revealed  that plankton  omnivores  may  change  their  feeding
behaviour  in response  to  changes  in temperature,  and  is therefore  of  interest  to plankton  modellers  con-
tributing  models  of biogeochemical  cycling  in  the  ocean  to climate  models.  In this  paper  we  consider  the
role  of  an  omnivorous  zooplankton’s  foraging  strategy,  seasonal  variations  and the  choice  of functional
forms  on  the  dynamics  of  a simple  two prey–one  predator  plankton  model,  within  a  Conservative-Normal
framework.  We  find  that assumptions  about  the  way  the  predator  forages  for  food,  the  specific  form for
grazing  and  mortality  terms,  and  seasonal  changes  in  the  environment  all qualitatively  affect  the  predic-
tions  that the  model  will  produce.  In  particular,  discriminate  foraging  and  seasonal  variations  engender
chaotic  dynamics  while  Holling  Type  III  grazing  and  quadratic  mortality  terms  suppress  chaotic  dynamics.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Phytoplankton and zooplankton together form the basis of the
oceans’ food chain. Through photosynthesis, limited by the avail-
ability of dissolved nutrients and solar irradiance, phytoplankton
convert carbon dioxide from the Earth’s atmosphere, drawing it
down into the deep oceans, in the process producing half of the
world’s atmospheric oxygen (Bork et al., 2015). Phytoplankton are
the primary organic food source for zooplankton, which are in turn
the food source for fish and whales.

The potential importance of plankton as key indicators of
climate change cannot be underestimated, since the viability of var-
ious phytoplankton depends upon water temperature and acidity.
Long term climate change could affect phytoplankton populations,
their seasonal blooms and/or their extinction (Falkowski, 2012)
and in turn, feed back on climate change through changes in bio-
geochemical cycling of climatically important compounds such as
carbon dioxide and dimethylsulphide (Charlson et al., 1987). Plank-
TOM5 (Le Quéré et al., 2005) and PlankTOM10 (Kwiatkowski et al.,
2014) are two examples of global marine ecosystem models, con-
taining many different plankton functional types, aimed at studying
the interactions between ocean biogeochemistry and climate
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change (Mitra et al., 2014). Recent analysis of data has shown the
complexity of plankton grazing interactions (Flynn et al., 2013), and
its sensitivity to changes in ocean temperature (Wilken et al., 2013).

The Conservative-Normal approach involves a set of ecological
rules that characterise the food web, and from which properties of
the system can be determined. It was  first formulated in a series of
papers by Cropp and Norbury (2012a,b) up to two different phyto-
plankton and two  different zooplankton populations with a single
nutrient constraining the populations. They used Holling Type II
functional forms. Bates et al. (2015) used the Conservative-Normal
framework to develop a system of twenty-one coupled nonlin-
ear ordinary differential equations to model a near-shore Antarctic
food web. As well as various types of phytoplankton, zooplankton
and benthic feeders, the model included fish, whales, seals, pen-
guins and seabirds. The choice of Holling Type III functional forms
and nonlinear mortality functions, cast in a Kolmogorov frame-
work, ensured the structural coexistence of each member of the
ecosystem as every boundary critical point of the system (where
one or more populations were extinct) was  locally unstable.

Cropp and co-workers have investigated the role of different
types of grazer predation in a prey–prey–predator model with
two phytoplankton populations (prey) and one zooplankton pop-
ulation (predator) with Holling Type II functional forms. Linear
stability and bifurcation analyses showed that under indiscriminate
predation (where the predator searches for and eats prey indis-
criminately according to what it encounters), only steady states or
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Table  1
The parameters in (2.1), their interpretations and values.

Par. Process Value

�1 Maximum (seasonal average) rate of N uptake by P1 1.00
�2 Maximum (seasonal average) rate of N uptake by P2 1.15
�1 Half-saturation constant for N uptake by P2 0.25
�2 Half-saturation constant for N uptake by P2 0.07
�1 Z grazing rate on P1 6.18
�2 Z grazing rate on P2 1.85
�1 Half-saturation constant for Z uptake of P1 5.50
�2 Half-saturation constant for NZ uptake of P2 5.50
�1 P1 specific mortality rate 0.00
�2 P2 specific mortality rate 0.26
�Z Z specific mortality rate 0.19
 1 Proportion of P1 uptake excreted by Z 0.40
 2 Proportion of P2 uptake excreted by Z 0.40

simple periodic limit cycle solutions obtain. For discriminate pre-
dation (where the predator preferentially searches for a particular
prey, but will eat other prey that it encounters), more complicated
periodic as well as chaotic states are also possible.

Here we extend the analysis to consider a transitionalist model,
which contains these two limits as special cases. We  utilise our
foraging transition parameter with the commonly used closure
parameter (the mortality coefficient of the zooplankton) to produce
a two-parameter bifurcation diagram, summarising the nonlin-
ear dynamics and placing the two special cases into context. We
also consider the effects of seasonal forcing on the system under
both discriminate and in discriminate grazing and finally, vary the
underlying functional forms of the grazing terms from Holling Type
II to Holling Type III and the mortality terms from linear to nonlinear
to extend our investigation to models with structural coexistence.

2. The plankton model

We  investigate a model comprising two different phytoplankton
populations, P1, P2, being grazed upon by one zooplankton popula-
tion, Z, in the presence of a limiting nutrient N (Cropp and Norbury,
2009):

Ṗ1 = P1

[
�1N

N + �1
− �1Z

1 + �1P1 + ��2P2
− �1

]
= P1f (P1, P2, Z),

(2.1a)

Ṗ2 = P2

[
�2N

N + �2
− �2Z

1 + ��1P1 + �2P2
− �2

]
= P2g(P1, P2, Z),

(2.1b)

Ż = Z

[
�1(1 −  1)P1

1 + �1P1 + ��2P2
+ �2(1 −  2)P2

1 + ��1P1 + �2P2
− �Z

]
= Zh(P1, P2, Z),

(2.1c)

together with the nutrient N mass conservation condition:

Ṅ = −Ṗ1 − Ṗ2 − Ż, (2.2)

where P1 + P2 + Z + N = 1. Here the populations Pi and Z are measured
by the fractions of limiting nutrient bound into their biomass – N
is then the fraction of limiting nutrient (available to the popula-
tions) in the nutrient pool. Apart from �, the various parameters
appearing in (2.1) are explained in Table 1, together with their mea-
sured parameter values in the field (see Cropp and Norbury, 2009
for further details). When � = 0, we obtain the discriminate model
considered by Cropp and Norbury (2009), while for � = 1, we obtain
the indiscriminate model considered by Cropp et al. and Moroz et
al. We  term (2.1) the transitional model for which 0 ≤ � ≤ 1. The � = 0
and � = 1 basic models have ecological significance, while the tran-
sitional model enables us to put the two limits into context: we

think of � as a bifurcation parameter. We  extend our bifurcation
analysis to � = 1.4 to capture the complete behaviour of the model.

The transitional model (2.1) also satisfies the Conservative-
Normal (CN) parameter constraints (see Cropp and Norbury, 2009).
The resource conditions that f > 0 and g > 0 when N = 1 and Z = 0 give

�1 <
�1

1 + �1
, �2 <

�2

1 + �2
, (2.3)

which translates to 0 < �1 < 0.8 and 0 < �2 < 1.07 for the measured
values in Table 1. Requiring h > 0 at the extremities of P1 + P2 = 1
gives

�Z < min

{
�1(1 −  1)

1 + �1
,
�2(1 −  2)

1 + �2

}
, (2.4)

so that Z survives on either P1 or P2 (or a combination of the two):
a ‘facultative omnivore’. This is part of a ‘normal’ ecology. From
Table 1 this gives 0 < �Z < 0.17. However when

0.17 < �Z < max

{
�1(1 −  1)

1 + �1
,
�2(1 −  2)

1 + �2

}
, (2.5)

we obtain an ‘exotic’ ecology, and Z becomes an ‘obligate omni-
vore’ for 0.17 < �Z < 0.57: Z grazes on both P1 and P2, but P1 must be
present for Z to survive, so that Z is obligate on P1.

While (2.5) violates the resource condition on the sign of h
at P2 = 1, bifurcation and stability analyses in Moroz et al. show
that with Table 1 measured parameter values, the ‘min’ constraint
permits only two-dimensional oscillatory behaviour in the (P2,
Z)-plane, whereas the ‘max’ constraint allows three-dimensional
periodic oscillations in (P1, P2, Z)-space, as well as period-doubling
bifurcations and chaos.

The foraging strategy parameter �, that transitions from dis-
criminate to indiscriminate grazing, and the zooplankton mortality
parameter �Z, that determines the prey-dependence of the zoo-
plankton and also closes the model, provide natural bifurcation
parameters with which to investigate the dynamical properties
of the model. While �Z transitions smoothly and we can iden-
tify critical values for it at which the trophic classification of the
zooplankton population changes, the foraging parameter � is only
explicitly ecologically defined for � = 0 and � = 1. However, we  will
show that the system smoothly transitions between � = 0 and � = 1,
and argue that these transition values might reasonably be inter-
preted to represent transitional foraging strategies. We  also extend
the examination of the linear stability boundaries of the system for
� > 1 for reasons that are detailed in Section 3.7 and Fig. 1. These
values represent enhanced indiscriminate foraging, where the for-
aging efficiency exceeds the handling time.

3. Critical points

The linear stability analysis of the critical points of (2.1) and (2.2)
uses the same notation and labelling as Cropp and Norbury (2009).
Indeed the analyses for the origin and prey-only critical points are
identical.

3.1. Origin critical point

There is a critical point at the origin, given by (P1, P2, Z, N) = (0,
0, 0, 1), whose linear stability is determined from the eigenvalues

�01 = �1

1 + �1
− �1, �02 = �2

1 + �2
− �2, �03 = −�Z. (3.1)

From (2.3), we  see that this critical point is an unstable saddle.
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