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a  b  s  t  r  a  c  t

Reliable  information  related  to vegetation  phenology  is  required  to improve  understanding  of
land–atmosphere  coupling  and  the  biosphere’s  response  and  feedbacks  to climate  change.  The logistic
function  is  commonly  used  to model  bounded  growth  and  decay  and extract  phenological  informa-
tion  from  remotely  sensed  vegetation  indices.  However,  several  other  growth  functions  can  also  model
bounded  growth  and  decay  and  may  have  more  desirable  properties  than the logistic  function  for  captur-
ing  deciduous  forest  phenology.  We  employed  three  complimentary  criteria  and  evaluated  the suitability
of  the  Gompertz,  logistic,  mirror-Gompertz,  and  Richards  functions  to  reliably  capture  remotely  sensed
phenology  of deciduous  forests.  Our  analyses  showed  that  although  all  the  four  growth  functions  fit
remotely  sensed  data  equally  well, their  ability  to  capture  rapidly  changing  phenology  early  in spring
and  late  in  fall  differs  significantly.  Using  10  years  of field  measurements  from  two  deciduous  forest  sites
in  the  northeastern  United  States,  we  showed  that  dynamics  in  the fraction  of  absorbed  photosyntheti-
cally  active  radiation  (FAPAR)  phenology  is  asymmetric  in  both  spring  and  fall.  It develops  more  rapidly
early in  spring  and decays  more  rapidly  late  in fall.  A  flexible  function  that  can  capture  these asymmetric
dynamics  is  likely  to capture  the phenological  development  and  the transition  dates  better.  Compari-
son  with  field  measurements  of start-of-season  (SOS),  end-of-season  (EOS),  and  growing  period  length
(GPL)  confirmed  this.  Mean  differences  between  modeled  and  observed  GPL  was 13.5  and  18.5  days  for
the Richards  and  logistic  function,  respectively,  at Harvard  Forest  and 2.6  and  7.1  days,  respectively  at
Hubbard Brook  Forest.  Our analyses  also  showed  that  FAPAR  and  normalized  difference  vegetation  index
have  a strong  linear  relationship  in spring,  but  correlate  poorly  in fall.  Our  results  suggest  that  a flexible
function  line  Richards  is likely  to be more  reliable  for modeling  phenology  and retrieving  information  of
transitions  events  from  remotely  sensed  NDVI.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Vegetation phenology exerts important controls on biophysi-
cal and biochemical exchanges between the land surface and the
atmosphere (Sellers and Hall, 1992). Phenology also regulates pri-
mary productivity in forests and agricultural systems (Angert et al.,
2005; Buermann et al., 2007), and is recognized as a simple yet
powerful integrator of the biosphere’s response to climate change
(Menzel, 2000; Chuine et al., 2004). High quality information about
the timing of phenological transition events, especially the start-of-
season (SOS), the end-of-season (EOS), and the photosynthetically
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active growing period length (GPL), is thus required to estimate sea-
sonal and interannual variations in ecosystem productivity and to
improve our understanding of dynamic interactions between the
atmosphere and biosphere. At the large spatial scales, remotely
sensed data from sensors such as the Advanced Very High Res-
olution Radiometer (AVHRR), the Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Satellite Pour l’Observation
de la Terre (SPOT) are the only source of repeated and consistent
observations of phenology (Reed et al., 1994). As a consequence,
remotely sensed estimates of phenology are now widely viewed
to be an important source of information for studying ecosystem
dynamics in response to climate variability and change (Hufkens
et al., 2012).

The seasonal pattern of variation in terrestrial ecosystems
observed from remote sensing is often referred to as land surface
phenology, and a number of remote sensing algorithms have been
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developed to model seasonal dynamics and extract information on
phenological transition events (Olsson and Eklundh, 1994; Moulin
et al., 1997; Moody and Johnson, 2001; Beck et al., 2006; Fisher et al.,
2006; Hermance et al., 2007). However, because ground truth data
are rare and are generally not collected using sample designs or at
spatial scales commensurate with requirements validating results
from remote sensing, the relative merits of different algorithms are
poorly understood (Liang and Schwartz, 2009). Indirect measures
of phenology related to river stage and discharge, snow melt, and
climate have been used for validation (e.g. White et al., 2009), but
it is not clear if the uncertainty in these data sets is significantly
less than the uncertainty associated with estimates obtained from
remote sensing. Further, recent studies have found that phenolog-
ical information obtained by different algorithms do not correlate
well with one another (White et al., 2009; Schwartz and Hanes,
2010).

Most remote sensing algorithms, either implicitly or explicitly,
assume that pixel-scale phenology follows a well-defined seasonal
trajectory. As a result, both parametric and non-parametric mod-
els have been used to capture this trajectory (see Hermance et al.,
2007, for a succinct summary). They also assume that phenological
transition events occur at specific points in the modeled trajec-
tory that satisfy well-defined criteria or conditions (de Beurs and
Henebry, 2004). While these two assumptions form the core of
nearly every algorithm, their justification has not been rigorously
considered. Many land surface phenology algorithms use piecewise
or double logistic functions to model seasonal dynamics in remotely
sensed vegetation indices (Jönsson and Eklundh, 2002; Ahl et al.,
2006; Soudani et al., 2008; Beck et al., 2006; Hird and McDermid,
2009; Atkinson et al., 2012). This approach is also widely used
to model field observations of plant phenology (Richardson et al.,
2006). The logistic function is favored because it readily mod-
els bounded growth, enabling easy and rapid determination of
phenological transition events. Bounded irreversible growth can,
however, be modeled by many different growth functions includ-
ing the Gompertz, mirror-Gompertz, Bertalanffy, Weibull, Richards,
and expolinear functions (Gompertz, 1825; Richards, 1959; Morris
and Silk, 1992; Katsanevakis, 2006; Buchwald, 2007). Although,
all of these growth functions model bounded growth and decay,
they differ significantly from one another in representing underly-
ing dynamics as the variable of interest progresses from the lower
asymptote to the upper asymptote, and vice versa. It is therefore
likely that these differences affect the ability of these functions to
model land surface phenology, and by extension, to capture phe-
nological transition events. To date, however, no comprehensive
assessment of this issue has been performed and it has been widely
assumed that logistic function is the most suitable (Fisher et al.,
2006).

In this study we assessed the comparative suitability of four
bounded growth functions to model land surface phenology in
temperate deciduous forests in the northeastern United States.
We evaluated the logistic, Gompertz, and Richards functions for
modeling spring phenology, and the logistic, mirror-Gompertz and
Richards functions for modeling fall phenology. Given the limited
availability of field data for validating phenological transition dates
estimated from remote sensing, we employ three independent
but complimentary criteria to perform this assessment. First,
we compared rates of phenological change predicted by each
growth function to observed rates of phenological change based
on high temporal resolution field measurements of the fraction of
absorbed photosynthetically active radiation (FAPAR) collected at
two field sites in New England. Second, we analyzed how well each
model fits MODIS normalized difference vegetation index (NDVI)
data from “pure” deciduous forest pixels. Finally, we  compared
estimates of SOS, EOS and GPL retrieved by each of the growth
functions with corresponding estimates obtained from long-term

Table 1
Form of four growth functions, whose suitability to model and retrieve phenological
information from remotely sensed normalized difference vegetation index (NDVI)
is  examined in the study. In the equations below, t is time, C(t) the remotely sensed
canopy state at time t, Cmax is the upper asymptote, Cmin the lower asymptote, k is
the  growth rate, t(m) is the time at inflection point, and S is a shape parameter. The
equations below show the form employed for spring growth, when C(t) progresses
from Cmin to Cmax.

Function Form

Logistic C(t) = Cmin + Cmax−Cmin
1+Exp−k(t−t(m))

Gompertz C(t) = (Cmax − Cmin) ∗ Exp−Exp−k(t−t(m))

Mirror-Gompertz C(t) = (1 − (Cmax − Cmin)) ∗ Exp−Exp−k(t−t(m))

Richards C(t) = Cmin + Cmax−Cmin[
1+S∗Exp−k(t−t(m))

]1/S

visual observations of canopy development and senescence col-
lected at field sites. Because high quality field data to test the
accuracy of phenological information derived from sensors such
as MODIS is relatively rare and labor intensive, this multi-criteria
approach provides a complementary basis to conventional field-
based studies for assessing the comparative suitability of different
growth functions for modeling land surface phenology. In addition,
as part of this analysis, we  also examine the relationship between
8-day MODIS NDVI and daily measurements of FAPAR during the
periods when canopies are rapidly growing or senescing.

2. Growth functions and land surface phenology

We  compared the suitability of four growth functions to track
forest canopy phenology in this study. The form of each of the four
growth functions is presented in Table 1 and is determined by four
common parameters: an upper and lower asymptote (Cmax and
Cmin, respectively), a growth rate (k), and an inflection point t(m).
The amplitude of each growth function is the difference between
Cmax and Cmin. We  denote time with t and the state of canopy
greenness at time t by C(t). In the spring, the start of canopy devel-
opment was  defined as the time when C(t) reaches 5% of the growth
function’s amplitude. Similarly, the time of full canopy develop-
ment was  defined to occur when C(t) reaches 95% of the amplitude.
In the fall, we used the same thresholds to define the start of
senescence and end of the growing season. We  used the 5th and
95th percentiles because they cover a realistic range of values for
phenological development, and because growth functions yield
unrealistically slow dynamics near their asymptotes.

We use R(t) to define the rate of change in C(t). To simplify com-
parisons with field data, we discretize R(t) for each function for
five equal time periods (identified as T1, T2, T3, T4 and T5) in both
the growth and senescence periods. The percentage of total change
realized in each time interval T1–T5 is denoted by G1, G2, G3, G4
and G5. Fig. 1 shows examples of C(t) and R(t) for each of the four
growth functions along with corresponding values of G1–G5. The
exact values of G1–G5 depend on the values of the asymptotes and
the parameters used in each case, but the broad pattern is con-
sistent within the range of parameter values meaningful to model
canopy development and senescence. As Fig. 1 shows, each of the
four growth functions exhibits a characteristic pattern in the rate
of change, R(t), which uniquely identifies the form of phenological
change predicted by each function during the spring growth and
fall senescence periods.

The logistic function describes a process where R(t) is sym-
metrical around its inflection point, which occurs when C(t) has
covered half the distance between Cmin and Cmax (Fig. 1a). The
growth rate is maximum in the third interval (G3, Fig. 1b). From a
phenological perspective the logistic function describes a canopy
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