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a  b  s  t  r  a  c  t

The  Rosenzweig–MacArthur  model  is  a  set of ordinary  differential  equations  (ODEs)  that  provides  an
aggregate  description  of the  dynamics  of a  predator–prey  system.  When  including  an  Allee  effect  on  the
prey,  this  model  exhibits  bistability  and  contains  a pitchfork  bifurcation,  a  Hopf  bifurcation  and  a hete-
roclinic  bifurcation.  We  develop  an  agent-based  model  (ABM)  on  a two-dimensional,  square  lattice  that
encompasses  the  key  assumptions  of  the  aggregate  model.  Although  the  two modelling  approaches  – ODE
and  ABM  –  differ, both  models  exhibit  similar  bifurcation  patterns.  The  ABM  model’s  behaviour  is  richer
and  it  is  analysed  using  advanced  statistical  methods.  In  particular,  singular  spectrum  analysis  is  used  to
robustly  locate  the  transition  between  apparently  random,  small-amplitude  fluctuations  around  a fixed
point  and  stable,  large-amplitude  oscillations.  Critical  slowing  down  of model  trajectories  anticipates  the
heteroclinic  bifurcation.  Systematic  comparison  between  the  ABM  and  the  ODE  models’  behaviour  helps
one  understand  the  predator–prey  system  better;  it provides  guidance  in  model  exploration  and  allows
one  to draw  more  robust  conclusions  on  the  nature  of  predator–prey  interactions.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction and motivation

Ecologists are more and more frequently asked to make predic-
tions about the potential effects of specific changes to an ecosystem
or a community of species. This demand is particularly vivid in
the context of climate change (Lavergne et al., 2010; Valladares
et al., 2014) or resource management. It especially applies when
anthropic harvesting is at play, as in fisheries (Lindegren et al.,
2010), or when biological factors might disturb an established com-
munity of species, as in cases of non-endemic species invading an
ecosystem (Crowl et al., 2008). Understanding these consequences
is also relevant when the driver of changes is internal, in particular
through evolutionary processes (Ferrière, 2009).

Whether the engine of change is external or internal, analysing
the consequences requires a comprehensive understanding of
the community dynamics. Achieving such an understanding has
proven to be a challenging task. Observational and experimental
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data show that an ecological system composed of only two inter-
acting species can exhibit non-trivial dynamics, such as bistability
and oscillations (e.g., Fussmann et al., 2000). The importance of
non-linear mechanisms in leading to such dynamics has motivated
theoretical work on simple models to characterise the dynamical
regimes, identify and circumscribe basins of attraction, and locate
bifurcations or regime shifts. To do so, ecologists have borrowed
mathematical concepts and tools from other disciplines and tried a
variety of modelling techniques, especially using systems of ordi-
nary differential equations (ODEs).

A recent innovation is the development of agent-based models
(ABMs), also called individual-based models in the ecological liter-
ature. ABMs simulate systems described by the rules of interaction
among autonomous individuals. According to DeAngelis and Mooij
(2005), some scholars view ABMs as exploratory tools that extend
classical aggregate models, whereas others suggest that ABMs
provide a methodological basis on which to build a novel research
paradigm (Grimm et al., 1999; Grimm and Railsback, 2005). In the
field of population dynamics, ABMs have helped investigate the role
of local interactions (Mccauley et al., 1993) and spatial dynamics
(Dieckmann et al., 2000); they are also being increasingly employed
to study evolutionary dynamics (Łomnicki, 1999; Gras et al., 2009).
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Can ABMs help the understanding of community dynamics?
How can their use complement the classic ODE approach? In
climate sciences, it has been proposed to advance knowledge
by moving across a hierarchy of models of the same class of
phenomena (Schneider and Dickinson, 1974; Ghil, 2001; Dijkstra
and Ghil, 2005). This hierarchy ranges from low-resolution ‘toy’
models, which help understand the general behaviour of the sys-
tem, all the way to very detailed ‘realistic’ models, which may  be
used for real-time forecasting of weather or climate. Moving up
the hierarchy implies adding mechanisms and improving resolu-
tion, which often comes at the cost of losing analytical tractability
and insight. Detailed models have to be integrated numerically, and
analysing their outputs may  require complex statistical manipula-
tions. Going back and forth between different levels allows one to
test the robustness of the conclusions and guide fruitful improve-
ments of the models at each level of the hierarchy.

The hierarchical modelling approach could be insightfully
applied to study the dynamics of communities and even ecosys-
tems. It would thus appear that classical ODE systems, such as
the Lotka–Voltera equations, are toy models – in the hierarchical
modelling terminology (Ghil, 2001) – whereas the ABM frame-
work is more appropriate for developing detailed models. ABMs
can be seen as more realistic, since agents often correspond to
observable organisms (Bonabeau, 2002). Contrasting the results
of different models has already allowed ecologists to point out
some mechanisms that a single-model approach may  overlook,
such as the influence of spatial distribution and localised inter-
actions (Donalson and Nisbet, 1999; Durrett and Levin, 1994), of
physiological structure (De Roos and Persson, 2005) and of het-
erogeneity (Hastings, 1990). In particular, Dieckmann et al. (2000)
pointed out instances in which the dynamics of mean-field models
differ from the ABMs they derive from, and proposed new math-
ematical methods to integrate the spatially distributed aspects of
ABMs into ODEs, such as moment methods (Law and Dieckmann,
2000) or pair-wise approximations (van Baalen, 2000).

In this paper, we illustrate the hierarchical modelling approach
by revisiting a classical predator–prey system and comparing the
dynamical behaviour of an ABM with that of an ODE model. The
guiding thread of this comparison is to determine whether the
two models’ bifurcation patterns – which summarise the key fea-
tures of a system’s dynamics – are qualitatively similar, even
though each model is built upon distinct and complementary prin-
ciples.

The key components of ODE models are the macro-level feed-
back mechanisms. Individuals, as distinct entities, do not play any
role per se. The dynamics results from the relative abundance of
each population, expressed through the principle of ‘mass-action’.
In ABMs, the system-level dynamics results from the micro-level
actions of autonomous individuals. They follow rules, but their
effective actions depend on local contingencies. In addition, agents
may have only limited information on the system they are embed-
ded in. Grimm and Railsback (2005) argue that reproducing results
of a classical ODE model with ABMs often led to the design of models
that are incomplete, not robust, and therefore lacking in interest.

In this paper, we do not aim to reproduce the outputs of an
ODE model with an ABM, neither do we want to perform any
quantitative comparison. Our objective is to establish whether the
behaviour patterns of the two models are in qualitative agreement,
i.e., whether the solution types – bistable, oscillatory and irregular
– are in one-to-one correspondence, including the transitions
between these regimes of behaviour, as long as the two  models,
while conceptually different, rely on the same key assumptions
about the system under scrutiny. In addition, we are interested to
find out – provided there is a good correspondence in regime types
and bifurcations between the aggregate ODE model and the ABM
– whether ideas on early warning that were developed for ODE

models Scheffer et al. (2009) can help formulate such early war-
nings for ABMs.

The qualitative comparison between our ODE model and the
ABM is carried out by computing the corresponding bifurcation
diagrams of the two  models. To do this, we  need to locate the bifur-
cation points in our ABM. The identification of attractors has not
been the main emphasis of ecological ABM studies, which tend to
focus instead on the emergence of spatial patterns (Grimm and
Railsback, 2005; Railsback and Grimm,  2011). Analysing attrac-
tor types and the transitions between them as significant model
parameters change – i.e., studying the models’ bifurcations – is
quite helpful in understanding regime shifts. These shifts are crucial
ecological phenomena and applying bifurcation-theoretical meth-
ods to ABM studies thus follows the call of Scholl (2001) to tighten
connections between agent-based modelling and dynamical sys-
tems theory. In particular, we propose and apply a method to detect
the transition between regular oscillations and irregular fluctua-
tions around a steady state.

In Section 2.1, we present the behaviour of a classical ODE model
of predator–prey systems: the Rosenzweig–McArthur model with
strong Allee effect on the prey. In Section 2.2, we  formulate an
ABM in which the key mechanisms that enter the aggregate model
emerge spontaneously; these mechanisms include the functional
response and the Allee effect. We  then define, in Section 2.4, the
experimental protocol of the simulations and explain the methods
we use to analyse the resulting ABM model.

In Section 3, we  present the results and compare the bifurcation
diagrams obtained for the two  models, while focussing on the Hopf
bifurcation in Section 3.2 and on the heteroclinic one in Section 3.3.
In Section 4, we  explore early-warning signals for the global tran-
sitions and test them when endogenous processes or exogenous
forcing modify slowly the model parameters. Finally, we discuss
the methodological implications of our work within ABM studies.

2. Models and methodology

2.1. The aggregate model and its behaviour

We  study the Rosenzweig–McArthur model with strong Allee
effect on the prey. Boukal et al. (2007) analysed how the ‘route to
collapse’ featured in Rosenzweig–McArthur models is influenced
by the addition of either a weak or a strong Allee effect, and by
the sigmoidicity of the functional response. The system’s collapse
occurs through a global bifurcation, characterised by an hetero-
clinic orbit (van Voorn et al., 2007). Wang et al. (2011) performed
a rigorous analysis of the model, and focussed on the existence
and uniqueness of limit cycles after the Hopf bifurcation. González-
Olivares et al. (2006) performed a similar analysis with an Holling
type III functional response.

Let X denote the prey population and Y the predator population.
The dynamics is governed by the following two coupled ODEs:
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= rX
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K

)
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This model has seven parameters, whose definitions and values
are listed in Table 1. We  will also use Z(t) = (X(t), Y(t)) to denote the
state of our two-species ecosystem as a function of time t.

The model’s dynamics can be summarised in a two-dimensional
regime diagram usually plotted in the (d, A)-plane; see, for instance,
González-Olivares et al. (2006), Boukal et al. (2007) and van Voorn
et al. (2007). We  choose � instead of d, which leads to a very simi-
lar diagram, plotted here as Fig. 1. The regime boundaries between
regions (1) and (2) and between regions (2) and (3) were obtained
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