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a  b  s  t  r  a  c  t

Landscape  heterogeneity,  non-local  spreading  mechanisms,  and  long-distance  transportation  connec-
tions  can  affect  the  spread  of  an  invasive  species  or  infectious  disease.  In this  paper,  we  introduce  a
mathematical  model  that  combines  a vector-based  transportation  network  with  models  for  continuous
invasive  spread.  Given  a strongly  connected,  directed  graph  of transportation  rates,  we assume  that  car-
riers can  transport  a biological  invader  to distant  sites.  Following  a possible  latent  stage,  the  invader  then
possibly  establishes  in the  new  location  and  spreads  outwards  in the  continuous  domain.  Numerical
results  are  shown  for the invasion  of  Bromus  tectorum  in  Rocky  Mountain  National  Park  based  on the
presence  probability  model  of Strickland  et  al. (2013)  and  compare  favorably  with  data.  Analysis  of  the
network  component  of  the  model  reveals  a  unique,  stable  steady-state  solution  of the  infected  vectors.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The invasion of non-native plants, animals and pathogens has
escalated dramatically over the last few decades with the increase
of trade, transportation and other elements of globalization (Mack
et al., 2000; Evangelista and Kumar, 2011; Stohlgren et al., 2013).
Invasive species pose threats to global ecosystems, and they are a
major environmental threat of the 21st Century (Mack et al., 2000;
Stohlgren and Schnase, 2006). Impacts include loss of native species
and habitat, economic suppression, reduced food and water secu-
rity, and direct threats to human health. For example, the impact
of emerald ash borer (Agrilus planipennis) on community residents
in Ohio is estimated to be between 1.8 and 7.6 billion for tree loss,
removal and replacement (Sydnor et al., 2007); the real estate value
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of Montana’s ranches has been reduced by 40% due to invasive spot-
ted knapweed (Centaurea maculosa; Sheley et al. (1998)); the glassy
winged sharpshooter (Homalodisca vitripennis,  an invasive insect
which carries a deadly plant bacterium to California grape, raisin,
and wine industries and related tourism) is estimated to have an
annual cost of approximately $35 billion (United States Department
of Agriculture (USDA), 2010). Overall economic costs associated
with invasive species in the United States are estimated to exceed
$120 billion per year in terms of control costs, lost productivity,
reduced water salvage, and reductions in rangeland quality and
property values (Pimentel et al., 2000, 2005). The global economic
costs of invasive species are estimated at $1.4 trillion annually, rep-
resenting five percent of the global economy (Keller et al., 2007;
Yemshanov et al., 2009). The economic costs of delaying active con-
trol and management efforts would be much greater and probably
immeasurable (Eiswerth et al., 2008).

Since control costs rise exponentially with population size,
early detection and ecological forecasting of invasive species are
urgently needed for rapid response and remain a high priority
for resource managers (Crowl et al., 2008). Ecological forecast-
ing requires innovative and flexible mathematical models to map
and predict harmful invasive plants, animals, and diseases in time
and space (Stohlgren and Schnase, 2006). Consider the difficulty of
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mapping an invasive species in a non-random environment vary-
ing in slope, aspect, elevation, vegetation type, and soil type. Now
consider varying rates of spread dependent on optimal versus sub-
optimal conditions for reproduction and spread. How rapidly, and
how far might the species spread in the short- or long-term? What
might be the effects of nonlocal spread through a transportation
network?

Ecological niche models (also called species distribution models,
environmental matching models, and habitat suitability models)
are increasingly being used to model and map  invasive species
distribution potential. Combining statistical algorithms with geo-
graphic information systems (GIS), ecological niche models attempt
to predict probability of occurrence of a species by using presence-
only or presence-absence data in combination with environmental
variables to predict the species potential or actual distribution
across a landscape (Franklin, 2009; Peterson et al., 2011). These
models are based on Hutchinson’s classical niche concept: the dis-
tributions of species are constrained by biotic interactions (e.g.,
competition and predation) and abiotic gradients (e.g., elevation,
temperature and precipitation) (Hutchinson, 1957).

The spread of species (including invasive species) has been
the subject of numerous mathematical models (Higgins and
Richardson, 1996, 1999; Higgins et al., 2003; Hastings et al.,
2005; Gallien et al., 2010). Many of these models are based on
a reaction–diffusion equation with Fickian diffusion and logis-
tic growth (Skellam, 1951; Okubo and Levin, 2001; Maruvka
and Shnerb, 2006). Models based on contact-birth processes as
introduced by Mollison (1977) represent another approach, in
which individuals have fixed spatial locations and the permanent
location of each newly born individual is determined by a prob-
ability distribution. This approach is better suited to herbaceous
invasive plant species that have permanent locations and there-
fore do not follow Fickian diffusion. In Strickland et al. (2013),
we introduced a model, following Mollison’s approach (Mollison,
1977), for the time-evolution of the occurrence probability of an
invasive plant species. Since the quantity of interest is occurrence
probability, not actual population size, data from ecological niche
models could be used to determine initial conditions and spatially
heterogeneous parameters. Other models combining suitability
data with spread are models for the spread of invasive Argentinian
ants (Roura-Pascual et al., 2009), and for the spread of invasive
plants utilizing a cellular automaton model (Smolik et al., 2010).

Integro-differential equation models that incorporate informa-
tion about dispersal distribution of plant seeds (Cain et al., 2000)
can predict the propagation speed of an invasion front into a land-
scape (Kot et al., 1996; Strickland et al., 2013). All of these models,
however, assume a continuous spatial domain and neglect the role
of transportation networks in the spread of invasive species or
diseases. Seed dispersal through transportation vectors such as
humans (Benninger-Truax et al., 1992), birds (Carlo et al., 2013),
or animals (Guiden, 2013) can significantly influence the spread
of a species (Harsch et al., 2014), and long-distance jump disper-
sals have been documented in species such as ants as well (Suarez
et al., 2001). Lookingbill et al. (2010) introduced a computational
network model to study species spread through fragmented habi-
tats. This approach is based on simulating the random walk of
individuals through a landscape graph consisting of nodes repre-
senting habitat patches and connections (edges) between nodes.
By observing the effect of removing edges, these authors identify
bottlenecks in species dispersal. Ferrari et al. (2014) introduced a
cellular automaton model for invasive species spread through a
landscape graph, allowing the connections between nodes in the
network to evolve over time. Simulations of this model point to
prominent pathways of spread across a landscape.

In the context of epidemiology, multiple software packages exist
to model long range network interactions between geographically

distributed metapopulations. For example, GLEAMviz (Balcan et al.,
2010) simulates infectious disease spread on a global scale, uti-
lizing detailed airline data and information about local commuter
patterns to connect separate metapopulations based on airport
locations. The GLEAMviz environment allows the user to specify
the exact infection model to be used, as well as transportation
rules for each infected compartment (e.g., certain infected, symp-
tomatic classes may  not be allowed to travel outside their current
occurrence). The Spatial and Temporal Epidemiological Modeling
(STEM) (Ford et al., 2006) system is a similar software model, with
a greater focus on being open source and modular in its approach.
While the large spatial scale of these models makes a metapopu-
lation approach ideal for modeling global or country-wide disease
epidemics, it is not particularly adaptable to ecological invasions
which are better approximated by a continuous, reaction-diffusion
type paradigm on the local level.

The purpose of this paper is to develop a general dynamical
systems model for the spread of invasive species or infectious dis-
eases in a discrete (graph-based) network. We describe situations
in which both transportation networks and an underlying contin-
uous spread are at play, we then couple the graph-based model
to a general model for continuous spread such as the Fisher-KPP
equation or a model derived from a contact-birth process.

This paper is organized as follows: In Section 2, we  introduce
a graph-based population model in which individuals can become
infected at nodes. The population of the graph is conserved, but
every node acts like both a source and sink for individuals to leave
and re-enter the graph uninfected. We  then conduct analysis on
this network model and show how it can be coupled to a spatially
continuous infection model to obtain a more complete model of
epidemic spread. In Section 3, we extend this model to the case of
a herbaceous invader and show numerical results for cheatgrass
(Bromus tectorum) spread in Rocky Mountain National Park. We
conclude with a discussion of our results in Section 4.

2. Infectious disease epidemic model

2.1. Linear graph model

To begin modeling long-distance spread, we will first consider
the general case of an epidemic with intermediary carrier vectors.
These carrier vectors will not be infectious amongst themselves
and remain on a transportation network with well defined nodes
and directional rates of flow. At each node, carrier vectors can later
interact with an underlying, spatially coupled model such as the
one developed in Strickland et al. (2013). If the underlying model
predicts invader presence at an assigned node location, network
carrier vectors will become infected and possibly spread the epi-
demic to other nodes, which in turn infect the underlying model.
The precise mechanics of this concept will be formalized in the
following sections, including some immediately relevant analysis.

Consider an individual on a strongly connected,1 directed graph,
and let X(t) be a stochastic variable which gives the node this indi-
vidual occupies at time t. We  assume that X(t) satisfies the Markov
property and represents a continuous-time Markov chain on the
nodes of the graph. Let gij ≥ 0 be the transition rate for the j → i
node edge whenever i /= j, and let

gjj = −
∑
i /= j

gij. (1)

1 For every node, there exists a path through the graph to every other node. This
is  typical for transportation networks.
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