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a  b  s  t  r  a  c  t

In  a recent  paper  Tennenbaum  introduced  a new  method  of  calculating  emergy  that  requires  only  ordinary
(i.e.  linear)  algebra.  We  prove  on a simple  example  with  one  feedback  and  one  split  that  ordinary  algebra
as  developed  by Tennenbaum  in his  paper  is  not  sufficient  to  tackle  the  problem  of  emergy  analysis.  In
particular,  we point  out  the problem  of  enumerating  pathways  which  are  relevant  for  emergy  analysis,  i.e.
which  avoid  the  double  counting  problem  of  feedbacks.  Hence,  the emergy  co-emergy  analysis  cannot
work  at least  for energy  system  diagram  with  splits  and  feedbacks.  Le Corre and  Truffet  have  already
proved  that  the  emergy  path-finding  problem  deals  with idempotent  (thus  non-linear)  algebra.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Emergy is a concept defined as the total solar equivalent
energy/exergy of one form that was used up directly or indirectly
in the work of making a product or a service. It means that emergy
analysis cannot be validated by experimentation except for some
trivial cases. Thus, as in e.g. theoretical physics, emergy analysis of a
given system requires at least a rigorous mathematical framework.
This mathematical framework is represented by a formula or a set
of axioms/rules which allows us to compute the emergy.

In Odum (1996, pp. 99–101) the Track summing method devel-
oped by Tennenbaum (1988) was presented on an example (see
Odum, 1996, p. 101). This method is based on the computation
of the emergy pathways from a source to the output of a node of
an energy system diagram at which the emergy has to be calcu-
lated. Based on these works, it seems that Brown and Herendeen
(1996) were the first to propose the following four rules of emergy
computation named emergy algebra:

(R1). All source emergy to a process is assigned to the processes’s
output(s).
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(R2). By-products from a process have the total emergy assigned
to each pathway.

(R3). When a pathway splits, the emergy is assigned to each ‘leg’
of the split based on its percent of total energy flow on the pathway.

(R4). Emergy within a system of interconnected components
cannot be counted twice.

(R4.1). Emergy in feedbacks cannot be double counted;
(R4.2). By-products, when reunited, cannot be added to equal a

sum greater than the source emergy from which they were derived.
A consequence of emergy algebra is that emergy calculus does

not obey Kirchoff-like circuit law. Thus, the aims of this short com-
munication are as follows:

• Clarify the Odum–Tennenbaum–Brown approach
• Show that emergy co-emergy analysis (see Tennenbaum, 2014) of

systems with splits and feedbacks based on linear algebra cannot
be exact. And to give the correct values of emergy in Appendix C
on the example of Tennenbaum (2014, subsection 2.2.1).

2. Linear algebra fails: an example

2.1. Odum–Tennenbaum–Brown calculus vs Tennenbaum linear
algebra approach

Let us consider the example of Brown (see Brown and
Herendeen, 1996, Figure 8b, p. 226). See also Fig. 1 which repre-
sents the fraction of emergy flowing on each arc. In this network
there are two sources s = 400 and s′ = 100, one feedback and one
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Fig. 1. Network with split at node 2.

split at node 2. The fraction of emergy which returns to node 1 is
0.6 and the fraction of emergy which goes to node 3 is 0.4.

By applying Odum–Tennenbaum–Brown calculus the emergy at
output of unity 3, say M3 using Tennenbaum (2014) notations, is:

M3 = 400 × 0.4︸︷︷︸
(a)

+ 100 × 0.4︸︷︷︸
(b)

= 200, (1)

where, according to rule (R4.1) and track summing method, (a) is
the weight of the path [s ; 1][1 ; 2][2 ; 3] and (b) is the weight of
the path [s′ ; 2][2 ; 3]. These two paths are the only ones which are
relevant to Odum–Tennenbaum–Brown calculus.

According to emergy co-emergy analysis (see Tennenbaum,
2014) one has to solve the following system:⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ =

⎡
⎢⎣

(1 − f1,1) −f2,1 0

−f1,2 (1 − f2,2) 0

−f1,3 −f2,3 1

⎤
⎥⎦

⎡
⎢⎣

C1,[3]

C2,[3]

M3

⎤
⎥⎦

with E1 = 400, E2 = 100 and E3 = 0. And:

F =

⎡
⎢⎣

f1,1 f1,2 f1,3

f2,1 f2,3 f2,3

f3,1 f3,2 f3,3

⎤
⎥⎦ =

⎡
⎣ 0.0 1.0 0.0

0.6 0.0 0.4

0.0 0.0 0.0

⎤
⎦ .

By applying Tennenbaum (2014, formula (7)) one has:⎡
⎢⎣

C1,[3]

C2,[3]

M3

⎤
⎥⎦ =

⎡
⎣ 1.0 −0.6 0.0

−1.0 1.0 0.0

0.0 −0.4 1.0

⎤
⎦−1 ⎡

⎣ 400

100

0

⎤
⎦

with⎡
⎣ 1.0 −0.6 0.0

−1.0 1.0 0.0

0.0 −0.4 1.0

⎤
⎦−1

=

⎡
⎣ 2.5 1.5 0.0

2.5 2.5 0.0

1.0 1.0 1.0

⎤
⎦

And thus according to Tennenbaum (2014) we have:

M3 = 400 + 100 = 500. (2)

Moreover, let  ̨ be the fraction of emergy which returns to node
1 from 2 (see Fig. 1). Then, for all  ̨ ∈]0, 1[ we  have

⎡
⎣ 1.0 −  ̨ 0.0

−1.0 1.0 0.0

0.0 −(1 − ˛) 1.0

⎤
⎦−1

=

⎡
⎢⎢⎢⎣

1
1 − ˛

˛

1 − ˛
0

1
1 − ˛

1
1 − ˛

0

1 1 1

⎤
⎥⎥⎥⎦ .

And then:⎡
⎢⎣

C1,[3]

C2,[3]

M3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

1
1 − ˛

˛

1 − ˛
0

1
1 − ˛

1
1 − ˛

0

1 1 1

⎤
⎥⎥⎥⎦

⎡
⎣ 400

100

0

⎤
⎦

so that M3 = 400 + 100 and the emergy co-emergy analysis provides
a result for M3 which is completely independent of ˛. This fact
contradicts rule (R3).

2.2. Explanation of the difference between formulas (1) and (2)

The difference between formula (1) and formula (2) is explained
as follows for  ̨ = 0.6. But note that the explanation is of the same
kind for all  ̨ ∈]0, 1[.

One remarks that the matrix G =
[

1.0 −0.6 0.0
−1.0 1.0 0.0
0.0 −0.4 1.0

]
is of the

form I − A, with I denoting the identity matrix and

A =

⎡
⎣ 0.0 0.6 0.0

1.0 0.0 0.0

0.0 0.4 0.0

⎤
⎦ =

⎡
⎢⎣

0.0 f2,1 0.0

f1,2 0.0 0.0

0.0 f2,3 0.0

⎤
⎥⎦ . (3)

Noticing that A is a substochastic matrix, G−1 can be expanded
as follows (see the proof in Appendix A):

G−1 = I + A + A2 + A3 + · · · + An + · · ·.  (4)

G−1 is known as the Green function. Such a matrix naturally
appears in several domains: in potential theory of Markov chains
(see e.g. Revuz, 1984), in the study of the discretized heat equation
(see e.g. Doob, 1959), in economics where this matrix is also known
as Leontief/Ghosh inverse (see e.g. Leontief, 1973; Oosterhaven,
1996). In ecology theory it has already been observed that matrix
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